Güneş türü yıldızlarda değişkenliğe etki eden süreçler

Bilgisayar Mühendisliği Bölümü, Türk-Alman Üniversitesi, İstanbul

Emre Işık

https://eiscal.notion.site

ÜRK-ALMAN ÜNİVERSİTESİ TÜRKISCH-DEUTSCHE UNIVERSITÄT

22. Ulusal Astronomi Kongresi — 6-8 Eylül 2022, İzmir

i.

- Manyetik akı çıkışı ve taşınımı (FEAT) modeli
- FEAT uygulamaları
 - Çizgi kesiti değişkenliği 1. 2. Işıkölçümsel değişkenlik

 - 3. Astrometrik yalpalama

• Etkin bölge yuvalanmasının önemi

Güneş türü yıldızlarda faküla-leke baskınlığı

• Etkin bölge yuvalanmasının önemi

- Güneş türü yıldızlarda faküla-leke baskınlığı
- Manyetik akı çıkışı ve taşınımı (FEAT) modeli
 - gulamaları
 - 1. Çizgi kesiti değişkenliği
 - 2. Işıkölçümsel değişkenlik
 - Astrometrik yalpalama

ğı Jeli

Güneş'te etkin bölge yuvaları

- N. Karapınar'ın konuşması Bugün 17:38 (24. oturum)
 - Yuvalar ve üstyuvalar
 - Dif. dönmeyi izler
 - Leke gruplarının min. %30'u yuvalarda
 - Sonraki ölçümler: %50-80
 - Uzlaşma?

Brouwer & Zwaan 1992 A පිA

Yıldızlarda akı çıkışı

Özavcı, Şenavcı, Işık, vd. (2018 MNRAS)

- Dev lekeler mi, yuvalar m?
- Diferansiyel dönmenin imzası?
- Flip-flop olayı?
- Büyük oranda öbeklenen çıkış?
- KIC 11560447
- Kı türü altdev + geri M türü cüce
- $P_{donme} = 0.53 d$
- Kepler verileri + dikine hızlar

Longitude

0.1 Vildizlarda aki çikişi

- $O_{200}^{0.08}$ $O_{200}^{0.12}$, $S_{200}^{0.14}$, $S_{200}^{0.16}$, $S_{200}^{0.$
 - Dev lekeler mi, yuvalar mi?
 - Diferansiyel dönmenin imzası?
 - Flip-flop olayı?

fs

- Büyük oranda öbeklenen çıkış?
- KIC 11560447
- Kı türü altdev + geri M türü cüce
- $P_{d\ddot{o}nme} = 0.53 d$

200

• Kepler verileri + dikine hızlar

300 400 0.00 0.02 0.04

9
2
2
ш
F
5
<u>Ч</u>
-
ы В
a
٩.
2
ш
\geq

2

4

3

0

24. çevrimin son yuvaları

Scott McIntosh (Twitter paylaşımı)

a) Güneş benzerleri **1. sorun: Güneş türü değişkenlik. Kimin hatası?** b) Güneş c) İnsanlar d) Hepsi

Reinhold vd. 2020 Science

THE ASTROPHYSICAL JOURNAL LETTERS, 901:L12 (7pp), 2020 September 20 © 2020. The American Astronomical Society. All rights reserved.

Amplification of Brightness Variability by Active-region Nesting in Solar-like Stars

Değişkenliği yuvalanma ile artırmak

Işık vd. 2020 ApJL

Yuvalanma, ışık eğrilerini nasıl etkiler?

Basın bildirileri:

bm.tau.edu.tr/gunes-benzeri-yildizlar-neden-gunes-ten-daha-degisken bogazicindebilim.boun.edu.tr/content/gunes-benzeri-yildizlari-gunesten-ayiran-nedir www.mps.mpg.de/starspots-revving-up-the-variability-of-solar-like-stars

Özgür yuvalanma — ışık eğrileri

Çok etkin Güneş (etkin olmayan yıldız) <S>=0.19

Işık vd. 2020 ApJL

Yuvalanma oranı

Orta etkinlikte yıldız <S>=0.23

Etkin boylam yuvalanması — ışık eğrileri

Çok etkin Güneş (etkin olmayan yıldız) <S>=0.19

Işık vd. 2020 ApJL

Orta etkinlikte yıldız <S>=0.23

• Etkin bölge yuvalanmasının önemi

- Güneş türü yıldızlarda faküla-leke baskınlığı
- Manyetik akı çıkışı ve taşınımı (FEAT) modeli
 - gulamaları
 - 1. Çizgi kesiti değişkenliği
 - 2. Işıkölçümsel değişkenlik
 - Astrometrik yalpalama

2. sorun: Neden daha çok/az etkin güneşlerde lekeler/fakülalar baskındır?

Oyuncak modelle denemeler

- Gözlenen Güneş bağıntılarından dış kestirim
- Işık vd. 2020 modeli kullanıldı
- $i = 90^{\circ}$
- *i* = 57°
- <\$> = 0.16 0.24
- Nokta büyüklüğü:
 0.0 < yuvalanma_oranı < 0.9
- S-ölçeği ve yuvalanma başına
 10 rastgele deneme

Işık vd. (2020) yapay ışık eğrilerinden "ölçümler"

2. çözüm: ¡manyetik maçta fakülalar yenilir, lekeler kazanır!

Nèmec, Shapiro, Işık vd. 2022 ApJL

- Yüzey akı taşınım modeli (Işık vd. 2018)
- 10 yıl ölçeğinde etkinlik artışı (ΔS) başına parlama
- İleri model $i = 0^{\circ}$
- İleri model $i = 90^{\circ}$
- **★** Lowell-Fairborn örneklemi (Radick vd. 2018)
- $\bigstar \{ T_{eff} \in T_{eff,\odot} \pm 200 \text{ K} \}$ [] { düşük parlama hatası (< 0.1) }</pre>

Mekanizma:

Etkin bölge ağları arasında akı iptali

Etkin bölge ağları araşında aki iptali

Nèmec, Shapiro, Işık vd. 2022 ApJL

- EB ağı alanı >> leke alanı
- → Yüzeye çıkışta p(ağda akı sıfırlanması)
 > p(leke alanında akı sıfırlanması)
- → Daha etkin yıldızlarda
 lekeler daha baskın

Animasyonlar için makaleye bkz.

• Etkin bölge yuvalanmasının önemi Güneş türü yıldızlarda faküla-leke baskınlığı • Manyetik akı çıkışı ve taşınımı (FEAT) modeli 1. Çizgi kesiti değişkenliği 2. Işıkölçümsel değişkenlik Astrometrik yalpalama

3. soru(n) Güneş türü etkinlik desenleri dönme hızı (~yaş) ile nasıl değişir?

- FEAT: Flux Emergence And Transport
- Yarı empirik Güneş çevrimi modeli (~ 22. çevrim)
- Akı tüpü benzetimleriyle taban yüzey @ Ω_{\odot}
- Akı tüpü benzetimleriyle taban \rightarrow yüzey @ Ω_{\downarrow}
- Temel varsayımlar:
 - Hızlı dönen Güneş'in Güneş türü bir dinamosu var
 - Etkinlik düzeyi $\propto \Omega_{\star}$

Forward modelling of brightness variations in Sun-like stars

I. Emergence and surface transport of magnetic flux

E. Işık^{1,2}, S. K. Solanki^{1,3}, N. A. Krivova¹, and A. I. Shapiro¹

10

Time [yr]

 $4\Omega_{\odot}$

 $\&\Omega_{\odot}$

• Etkin bölge yuvalanması: dönme ile parlaklık değişkenliğinin ardındaki gizli ajan?

nesting=0.0 nesting=0.7 nesting=0.7 $8\Omega_{\odot}$

Leke dağılımları

Sowmya vd. 2022, *ApJ*

Animasyonlar için makaleye bkz.

Leke dağılımları

Sowmya vd. 2022, ApJ

Animasyonlar için makaleye bkz.

1.

Çizgi kesiti değişkenliği (Doppler görüntülemesi) 2. Işıkölçüm değişkenliği

Observing and modelling the young solar analogue EK Draconis: starspot distribution, elemental abundances, and evolutionary status

H. V. Şenavcı^[®],¹★ T. Kılıçoğlu,¹ E. Işık^[®],^{2,3}★ G. A. J. Hussain,^{4,5,6} D. Montes^[®],⁷ E. Bahar¹ and S. K. Solanki^{3,8}

- G1.5 türü PMS yıldızı
- $P_{\rm rot} = 2.6 \, {\rm gun}$
- Tayflar: HERMES & CAFE

EK Dravs. FEAT@9.6 Ω_{\odot}

Şenavcı, Kılıçoğlu, Işık vd. (2021 MNRAS)

• Leke alanları benzetimi (FEAT)

• Doppler görüntüsü (FEAT-DI)

Gözlemsel Doppler görüntüsü

Diferansiyel dönme dayatılırsa...

Şenavcı, Kılıçoğlu, Işık vd. (2021 MNRAS)

- Dif. dönme ile Doppler g.
- "Güney" yarıkürenin yan $4 x \Delta \Omega_{\odot}$ etkisi?
- Dif. dönen DI_{obs}, FEAT ile daha uyumlu

gözlemsel DI

 $2x \Delta \Omega_{\odot}$

2. Işıkölçüm değişkenliği

FEAT uygulamaları

1000 1250 1500 1750 2000 2250 2500 ariations in Sun-like stars II. LIGHT CULVES and variability

Yuvalanma Plaj (etkin bölge ağı)

Lekeler

Nèmec, Shapiro, Işık, et al. (2022, A&A, hakemde)

0.0

- o.7 free
- 0.7 AL

	1.0
	-0.8 o
	verag
190	0.4 co
37	-0.2
	0.0
	1.0
had	-0.8 u
	overag
A.	Vicea co
	-0.2
	0.0
	1.0
	-0.8 Φ
9	verag
	Area co
6	-0.2
	0.0

Forward modelling of brightness variations in Sun-like stars II. Light curves and variability

Siyah: yuvalanma yok — Renkli: %70 etkin boylam yuvalanması

Nèmec, Shapiro, Işık, et al. (2022, A&A, hakemde)

Forward modelling of brightness variations in Sun-like stars **II. Light curves and variability**

- Nèmec, Shapiro, Işık, et al. (2022, A&A, hakemde)
- Siyah: yuvalanma yok Renkli: %70 özgür yuvalanma

Bilinen periyotlu güneşler ve FEAT benzetimleri

- *Kepler* 'Suns': 5500-6000 K
- FEAT varsayımı: 1-1 dönme-etkinlik ölçeklemesi

Sowmya vd. 2022 *ApJ*

Yuvalanma: Özgür 0.99 Yuv.: Özgür 0.90 Gözlemsel ortalama Yuv.: Etkin boylam 1.0 Yuv.: 0.0

Göz. Güneş aralığı

FEAT uygulamaları

2. Işıkölçüm değişkenliği 3. Astrometrik titreşme

Predictions of Astrometric Jitter for Sun-like Stars. II. Dependence on Inclination, Metallicity, and Active-region Nesting

K. Sowmya¹, N.-E. Nèmec¹, A. I. Shapiro¹, E. Işık², V. Witzke¹, A. Mints³, N. A. Krivova¹, and S. K. Solanki^{1,4}

Model based on Shapiro et al. 2021 ApJ - paper I

https://doi.org/10.3847/1538-4357/ac111b

Astrometrik yalpalama : Güneş etkinliği + Yer

Sowmya et al. 2021, *ApJ*

Astrometrik yalpalama : Güneş etkinliği + Yer

Yuvalanma yok

Gaia'nın gözlem stratejisine uygun örnekleme

Sowmya et al. 2021

%90 yuvalanma

Predictions of Astrometric Jitter for Sun-like Stars. III. Fast Rotators K. Sowmya,¹ N.-E. Nèmec,^{2,1} A. I. Shapiro,¹ E. Işik,³ N. A. Krivova,¹ and S. K. Solanki^{1,4}

Etkin yıldızlar

Sonuçlar

- Etkin bölge yuvalanması, öncelikle Güneş'te daha iyi belirlenmeli.
- Etkin bölge yuvalanması, Güneş "eşi" yıldızların değişkenlik desenlerinde önemli!
- Etkin bölgeler arası akı sıfırlanması, faküla leke baskınlığını açıklıyor.
- Doppler görüntülerinde alçak enlemli yapılar, diğer yarıküre etkinliğinin izi olabilir!
- Dönme-etkinlik bağıntısı + etkin bölge yuvalanması \rightarrow değişkenlik desenleri
- Etkinliğe bağlı astrometrik yalpalama:
 - gezegen tanısında hata kaynağı
 - manyetik etkinlik desenlerini anlamada araç •

İşbirlikleri: Alexander Shapiro, Sami Solanki (MPI f. Solar Sys. Res.), Nina-Elisabeth Nèmec (Uni. Göttingen) Hakan V. Şenavcı, İbrahim Özavcı, Tolgahan Kılıçoğlu, Engin Bahar, Nurdan Karapınar (Ankara Ü.)

