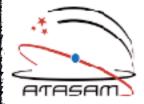
ROTSEIIId Değişen Yıldız Kataloğu

Dr. Onur SATIR

Doç.Dr. Nazım Aksaker Doç.Dr. Cahit Yeşilyaprak Bülent Burak Güçsav



Atatürk Üniversitesi Astrofizik Araştırma ve Uygulama Merkezi Müdürlüğü

ROTSE IIId

ROTSEIII-d Telescope

Optical design: Cassegrain (modified)

Main mirror diameter: 450 mm

Focal length: 850 mm (with field lenses)

Focal ratio: f/1.8 (main mirror)

Resolving power: 0.31 arcsec lmage scale: 241"/mm

Filter:

Dome: Clamshell type

Time Span : 2004-2010

Disk Space: 2.2TB

FOV: 1.85 degree

Pointing : > 20000 (overlapped)

ROTSEIII-d CCD Camera

Model: Astronomical Research Cameras, ARC E2V CCD42-40

Sensor: Marconi CCD42-40 (E2V), BT

Format: 2048x2048 pixels

Pixel size: 13.5 micron
Sensor size: 27.6 x 27.6 mm
Readout noise: 10 e- (1 MHz)
Dark current: 0.06 e-/pixel/sn

Dynamic range: 16-bit

Binning: 1x1, 2x2, 3x3

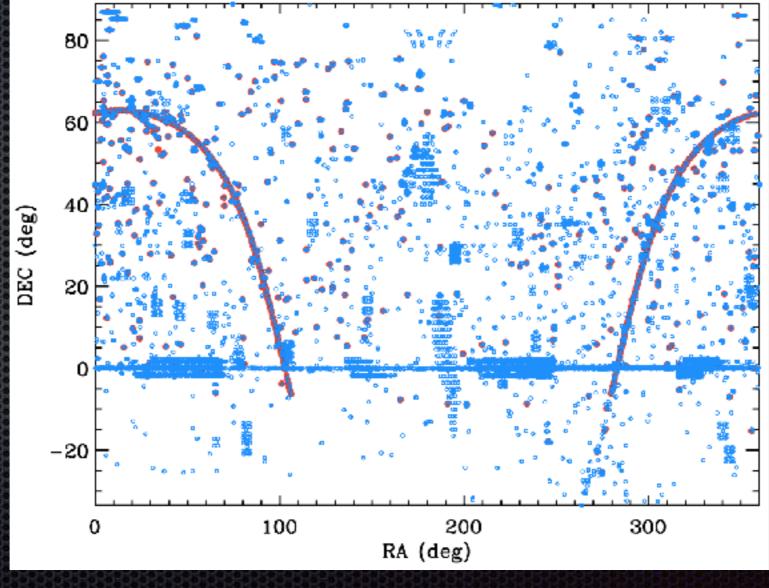
Exposures: 5, 20, 60 sec. (Default values, changeable)

Cooling: Liquid, Thermocube 300 chiller

Interface: ARC 22, f/o Timing Board

Readout time: 6 sec (full frame)
Pixel scale: 0.26 arcsec/pixel
Field of view: 1.85 x 1.85 degree

ROTSEIIId



ROTSE IIId

Güçsav ve ark. 2012;

- Paralel Programlama
- < 10.000.000 lşık Eğrisi
- 16 Çekirdekli Intel® Xeon® E5-2600 64 GB RAM ile 2 ay işlem süresi

Sonuçlar:

- ROTSE arşivinde periyodik değişenler arandı.
- UPSILON kodu kullanıldı.
- Bulunan değişenlerden yalnızca ~%10'u SIMBAD'da yer alıyor.

DOI: 10.1051/0004-6361/201527188

© ESO 2016

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

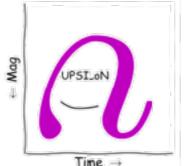
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

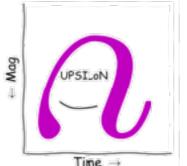
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

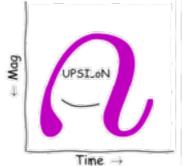
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

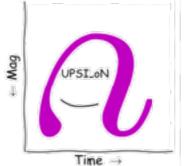
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

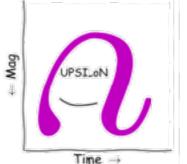
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses — § Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable — as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

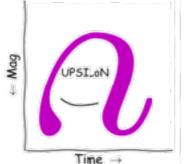
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

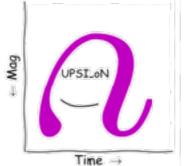
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

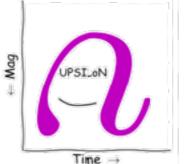
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

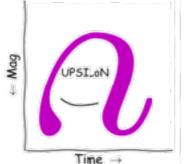
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

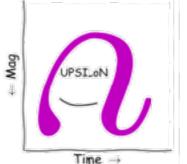
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

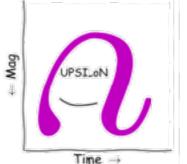
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses – δ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

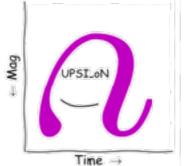
Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses $-\delta$ Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable – as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

DOI: 10.1051/0004-6361/201527188

© ESO 2016



(aUtomated Classification of Periodic Variable Stars using Machine LearNing)

A package for the automated classification of periodic variable stars*

Dae-Won Kim** and Coryn A. L. Bailer-Jones

Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

Received 13 August 2015 / Accepted 4 December 2015

ABSTRACT

We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g., period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses — ô Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable — as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. The majority of misclassifications of the subclass model is caused by confusion within a superclass rather than between superclasses. To assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to HIPPARCOS periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if there are more than 80 data points and the duration is more than a few weeks.

İşık Eğrisi

Periyodik Değişen Adayı

4.661.117

Periyodik Değişen Adayı

4.661.11/

403.455

Periyodik Değişen Adayı

Sağlama

- Simbad
- OGLE
- GCVS
- Periodic LINEAR Variables (PLV)
- AAVSO The International Variable Star Index (VSX)
- The Catalina Surveys Periodic Variable Star Catalog

SIMBAD

				3										1)		F	5/			
	CEPH_10	CFPH_F	CEPI1_Other	DSCT	FB FC	กา ยา	FB_FSD	IPV Mira AGB C	IPV_Mira_AGB_O	IPV OSARG AGB	LPV_OSARG_RGB	LPV_SRV_AGB_C	LPV_SRV_AGB_O	NonVar	RRL_ab	RRL c	RRL d	RRI e	Т2СЕРН	۸II	100
AII	260	2482	170	15555	4972	58197	11978	5597	1355	1078	610	3993	9931	97395	8260	1810	24	199	11.52	225018	
Star	194	1625	D	9494	3489	45246	9434	3838	939	930	541	2598	5392	59866	3545	786	D	53	851	148893	
Galaxy	21	318	55	2/120	263	1561	320	261	53	2	1	205	1025	12890	2335	502	9	65	98	22404	
PM*	14	89	6	797	221	3510	751	264	126	7D	38	207	427	3924	263	12	2	6	4fi	10833	
*inCl	8	117	3	459	270	1710	268	546	36	22	8	394	818	3825	245	41	1	1	28	8803	
RGB*	6	42	2	280	123	1446	249	87	25	12	5	92	262	2810	165	34	0	2	30	5672	
GinCl	0	22	9	121	67	548	24	48	7	0	1	24	293	2216	391	49	1	8	5	3934	
*inAssoc	0	4	2	63	6	546	42	69	14	Ü	1	84	543	658	30	ŧ	0	1	0	2071	
RotV*	0	6	0	154	11	368	72	14	6	1	2	20	29	1294	32	6	1	0	4	2020	
EB*WUMa	1	19	1	392	115	114	89	41	8	D	D	1	34	869	D	44	D	23	1	1830	
V*	2	15	1	133	26	205	78	28	10	4	1	20	118	669	36	11	D	1	1	1365	
YSO	1	g	2	/4	9	240	24	17	2	D	D	50	78	589	60	-17	D	3	1	11 /6	
RRLyr	1	21	0	88	30	4J	31	20	12	υ	Ü	1	29	323	249	68	5	11	1	939	
low-mass*	0	6	0	39	3	209	1	11	1	D	D	16	40	497	57	5	D	1	3	896	

	H		A													\bigcirc	4	51	852
	CFPH_10	CEPIL	DSCT	EB_EC	EB ED	HB_FSD	I PV_Mira_AGB_C	LPV_Mira_AGB_O	LPV_OSARG_AGB	IPV_SRV_AGB_C	IPV_SRV_AGB_O	NonVar	RRL_ab	RRL_c	RRI d	RRI_c	IZCEI'H	All	100
All	5	42	187	125	366	183	98	57	11	28	149	670	149	31	1	10	27	2139	100
М	1	2	24	13	11	12	11	23	0	0	23		13	3	o	0	3	200	
EA	1	D	11	6	83	20	6	1	2	2	4	41	4	D	a	ū	3	184	
EW	D	D	30	38	11	15	В	0	D	О	2	50	1	1	O	2	1	160	
RRAB	0	2	13	3	2	4	2	3	0	0	1	48	64	3	0	2	2	149	
LB	0	0	8	6	27	8	8	2	1	4	11	53	6	1	0	0	2	137	
SRB	0	3	6	з	17	11	6	2	2	3	8		5	1	a	1	0	116	
EB	D	1	4	4	В	12	10	0	D	D	2	22	3	2	ū	2	0	70	
SR	0	1	7	2	6	8	3	5	1	0	15	15	6	0	0	0	1	70	
DCEP	2	9	2	5	2	9	4	0	0	0	10	12	4	0	0	0	4	63	
SR:	O	D	5	1	6	1	5	1	1	2	g	21	1	0	٥	٥	0	53	

Periodic		EA	R
Variables	(PI		

	CEPH_F	ISCI	EB_EC	EB_ED	EB_ESD	LPV_SRV_A	NonVar	RRL_ab	RRL_c	II∀	100
All	2	8	3	8	2	5	30	10	5	73	- 90
RRc	0	0	1	1	0	2	5	1	3	13	- 80
RRab	1	0	0	4	2	3	8	6	2	26	- 70
OTHER	O	U	O	2	O	Ü	2	1	O	5	- 60
LPV	0	D	0	D	0	D	1	0	0	1	- 50
EB/EW	0	I	2	D	O	Ü	11	0	0	20	40
EA	0	0	0	0	0	0	2	2	0	4	30
CT/SXPH	0	1	0	1	O	D	1	o	0	3	- 20
CEPH2	1	0	0	0	0	0	0	0	0	1	10

Catalina

						o_usi	AGB_O	GB_C	CB_O								
	CEPH F	DSCT	EB EC	EB_ED	EB ESD	LPV_Mira_AGB_C	LPV_Mira_A	IPV_SRV_AGB	UPV_SRV_AGB_O	NonVar	RRI _ab	RRI_c	RRL d	RRL_c	T2CFPH	₹	_
All	5	56	26	35	14	7	1	2	7	175	16	12	1	1	2	360	
EW	2	48	24	1/	12	3	0	o	2	122	9	3	ū	1	1	244	
EA	1	3	1	1	O	3	O	1	0	23	3	2	ū	Ü	1	45	
RRc	а	2	1	2	a	a	0	1	2	13	1	,	1	а	a	30	
RS CVn	1	D	a	5	1	a	0	0	2	8	D	D	D	D	a	17	
LPV	0	0	0	0	0	1	1	0	0	2	1	0	0	0	0	5	
RRab	0	0	0	1	0	0	0	0	o	3	0	0	0	0	0	4	
beta	0	1	0	1	o	0	0	0	o	1	0	0	0	0	0	3	
RRd	o	0	0	0	1	0	0	0	o	1	0	0	0	0	0	2	
EA_UP	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	2	

				V															4	5
	CEPH_10	CFPH F	DSCT	FB FC	FB FD	กรา ⁻ ยว	LPV_Mira_AGB_C	LPV Mira AGB 0	LPV OSARG AGB	IPV_OSARG_RGB	HPV_SRV_AGB_C	LPV_SRV_AGB_O	NonVar	RRI ab	RRL_c	RRL_d	RRI e	IZCLPII	All	100
All	1	39	170	78	280	104		25	4	1	27	107	605	74	25	1	3	26	1615	
EW	o	2			18	20	4	1	O	Ü	0	6	140	9	4	υ	3	3	319	
MISC	o	8	24	6	38	21	3	0	U	1	2	2	/1	4	2	υ	0	0	182	
EA	0	3	5	3	49	10	3	0	0	0	4	6	45	5	1	0	0	1	135	
L	o	0	10	7	18	4	5	1	2	0	8	13	44	3	0	0	0	1	119	
RRAB	o	2	10	2	5	2	2	0	Ü	Ü	0	5	31	24	1	υ	0	Ü	93	
L:	o	2	2	0	15	Ü	2	0	U	Ü	1	23	22	1	U	υ	0	1	11	
ROT	0	1	2	1	17	3	o	o	0	0	0	0	39	9	D	Ω	0	1	73	
LPV	o	o	10	1	20	1	0	1	1	O	2	2	32	1	o	υ	0	1	72	
SR	ō	3	4	5	12	3	2	4	Ü	υ	0	6	19	o	Ü	υ	0	j.	61	90
М	o	0	4	2	3	3	6	10	0	0	0	6	9	3	۵	۵	0	1	47	
RRC	o	0	3	1	3	0	0	o	0	0	1	3	16	3	6	1	0	0	37	
SR:	o	1	1	1	4	3	1	2	1	0	1	3	12	1	0	0	0	o	31	

ROTSE ışık eğrileri yoğun bir temizlikten geçirilecek,

ROTSE ışık eğrileri yoğun bir temizlikten geçirilecek,
gerekirse baştan üretilecek.

- ROTSE ışık eğrileri yoğun bir temizlikten geçirilecek,
 gerekirse baştan üretilecek.
- UPSILON Machine Learning kodu, ROTSE verisi ile eğitilecek ve kendi Random Forest kütüphanemiz elde edilecek.

- ROTSE ışık eğrileri yoğun bir temizlikten geçirilecek,
 gerekirse baştan üretilecek.
- UPSILON Machine Learning kodu, ROTSE verisi ile eğitilecek ve kendi Random Forest kütüphanemiz elde edilecek.
- SIMBAD'dan sadece UPSILON türleri ayrı ayrı indirilerek karşılaştırma yapılacak.

- ROTSE ışık eğrileri yoğun bir temizlikten geçirilecek,
 gerekirse baştan üretilecek.
- UPSILON Machine Learning kodu, ROTSE verisi ile eğitilecek ve kendi Random Forest kütüphanemiz elde edilecek.
- SIMBAD'dan sadece UPSILON türleri ayrı ayrı indirilerek karşılaştırma yapılacak.
- Herbir UPSILON türü için literatürde bilinen kaynaklar toparlanıp, kataloglar oluşturacak, ve bu kataloglar sağlama için kullanılacak.