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MANYETİK GÜNEŞ
The magnetically variable Sun

11-year cycle of
magnetic activity
and surface flux

MaximumMaximum

Minimum

The 11-year solar cycle

Solar magnetic activity varies with a period of 
roughly 11 years. Long-term variations are 
superposed upon this cycle. 

“Maunder-Minimum”



❖ T: 2x106 ➘ 6x103 K

❖ !: 2x10-1 ➘ 2x10-7 g cm-3

❖ P: 1015 ➘ 105 bar
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AÇIK PROBLEMLER

• Güneş’in 11/22 yıllık        
etkinlik/manyetik 
çevriminin perde arkası…  

• Çevrimi güden manyetik 
akı nereden beslenir, 
nerede depolanır? 

• Çevrimi doyuma 
ulaştıran doğrusal 
olmayan süreçler neler 
olabilir? 

• Büyük minimumlar ve 
maksimumlar nasıl 
oluşur?

GÜNEŞ’İN MANYETİK ÇEVRİMİ
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Figure 1
The solar magnetic field and its cycle. (a) A continuum image and (b) a line-of-sight magnetogram, both taken on March 30, 2001, by
the MDI instrument onboard SOHO (ESA/NASA). (c) A synoptic magnetogram (courtesy of D. Hathaway, NASA/MSFC),
constructed by zonally averaging full-disk magnetograms over successive solar rotations and stacking such averages into a time-latitude
diagram. (d ) The time series of the group sunspot number (SSN; in red; Hoyt & Schatten 1998) together with pseudoSSN time series
constructed from two cosmogenic radioisotopes (data courtesy of I. Usoskin, Sodankylä Obs.). These provide measures of the overall
activity levels at lower temporal resolution but over a much longer timespan than the sunspot record.
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AÇIK PROBLEMLER

GÜNEŞ - YILDIZ BAĞLANTISI

• Yıldız etkinliği, dönme ile neden ve nasıl şiddetlenir? 
• Dönme - çevrim dönemleri arasındaki bağlılık nasıl açıklanabilir? 
• Yıldız etkinliğini denetleyen doğrusal olmayan süreçler nelerdir?

The Astrophysical Journal, 794:144 (8pp), 2014 October 20 Reiners, Schüssler, & Passegger

Figure 4. Separate representations of X-ray activity vs. rotation period in
the unsaturated (lower part) and saturated (upper part) regimes. Activity is
represented in terms of LX in the unsaturated regime and in terms of LX/Lbol
in the saturated regime.
(A color version of this figure is available in the online journal.)

β = −2, and k = 1.86 × 10−3 d2 R4
⊙, saturation sets in at

about log kP −2R−4 = −3.14. With Lbol ∝ R4 and L⊙ =
3.853 × 1033 erg s−1, we find

Psat (days) = 1.6
(

Lbol

L⊙

)−1/2

=
(

Lbol

1.1 × 1034

)−1/2

, (10)

where Lbol is in units of erg s−1. This result is similar to
Equation (6) of Pizzolato et al. (2003).

For this value of the critical period, we show the distribution
of log LX versus P for the unsaturated regime together with
log(LX/Lbol) versus P for the saturated regime in the lower
and upper panels of Figure 4, respectively. For the unsaturated
regime, we find the relation

log LX = (30.71 ± 0.05) − (2.01 ± 0.05) log P, (11)

which is consistent with our optimal value β = −2.8

3.5. A Slope in the Saturated Regime

All three representations shown in Figures 3 and 4 indicate a
slight slope of the rotation–activity relationship in the saturated
regime, i.e., some remnant dependence of the activity on
rotation (or other parameters) even for very rapidly rotating
stars. Quantitatively, we find the following for the different
representations:

log
LX

Lbol
= (−3.37 ± 0.06) − (0.16 ± 0.03) log Ro,

log
LX

Lbol
= (−3.04 ± 0.02) − (0.07 ± 0.01) log (kP 2R4),

log
LX

Lbol
= (−3.12 ± 0.01) − (0.11 ± 0.03) log P.

There is a statistically significant slope in all three cases.
The slope is least significant (but still above 3σ ) in the
parameterization with P, while it is at ! 5σ and more in the other
two cases. The slope is likely due to a remaining dependence
of the dynamo on rotation period even when saturation is
reached, but it may also be influenced by small differences
in the saturation level between stars of different mass.
8 For the original sample, we find β = 1.97 ± 0.08.

Figure 5. Slope β for subsamples that contain stars out to a maximum distance.
Error bars show 1σ uncertainties.

3.6. Luminosity Bias

W11 pointed out that the slope of the rotation–activity relation
may suffer from a luminosity bias. A possible consequence
is that the least X-ray bright stars are systematically missed,
so that the average X-ray luminosity among the least active
stars (the slowest rotators) is overestimated. This would lead
to a slope that is shallower than the true relation. We lack a
statistically unbiased, complete sample of stars with X-ray and
rotation period measurements. Nevertheless, the large sample
of targets allows us to test whether the slope β that we derive
in the unsaturated regime depends on the distance to the stars
in the sample. A luminosity bias would be less pronounced in
a sample of nearby stars and would become more important if
we include increasingly distant objects. We carried out this test
by computing the slope β for stars in the sample with distances
out to 15, 30, 60, 120, 240, and 480 pc. The results are shown
in Figure 5. We find no significant trend of β as a function
of distance limit. There is a marginal trend towards higher
absolute values of the slope at large distances, but it is dominated
by the sample limited to 15 pc which has large uncertainties.
We conclude that our results do not show evidence of a
luminosity bias.

4. DISCUSSION

The result of our generalized analysis of the rotation–activity
relation can be summarized as follows. The total X-ray lumi-
nosity scales with the rotation period (P −2) as long as the stel-
lar activity is not saturated, and X-ray activity saturates for a
given star when LX/Lbol reaches a level of about 10−3. In the
unsaturated regime, this description is equivalent to a scaling
of LX/Lbol ∝ P −2R−4, which could be written as a Rossby
number scaling of the form LX/Lbol ∝ Ro−2 if the convective
overturn time scales as τ ∝ R−2 ∝ L

−1/2
bol . Furthermore, for a

given star in the saturated regime, LX/Lbol still shows a weak but
significant dependence on rotation. In what follows, we discuss
some physical implications of these results.

4.1. LX ∝ P −2

This relationship means that two stars with the same rotation
period emit the same X-ray luminosity, irrespective of their mass
or radius. Since observations indicate that LX is proportional to
Φs, the total magnetic flux at the stellar surface (Pevtsov et al.

6
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P. Petit et al.: Magnetic polarity reversal of HD 190771 3

Fig. 2. Magnetic maps of HD 190771, derived from 2007, 2008, and 2009 observations in the left, middle, and right columns,
respectively. The map on the left is plotted after P08. For each data set, the 3 charts illustrate the field projection onto one axis of
the spherical coordinate frame with, from top to bottom, the radial, azimuthal, and meridional field components. The magnetic field
strength is expressed in gauss and the rotational phases of observation are indicated as vertical ticks above each epoch.

Synthetic Stokes V profiles are computed for all observed
rotation phases and compared to the data sets. The data adjust-
ment is iterative and based on a maximum entropy algorithm
(Skilling & Bryan 1984). The surface magnetic field is projected
onto a spherical harmonics frame (Donati et al. 2006), where
the magnetic field geometry is divided between a poloidal and
toroidal component (Chandrasekhar 1961). As in P08, we limit
the spherical harmonics expansion to `  10, after checking that
increasing even more ` does not provide a superior data adjust-
ment. We finally assume that the star is not rotating as a rigid
body, but experiences a latitudinal shear that we simply model as
⌦(✓) = ⌦eq�d⌦. sin2(✓), where ✓ is the stellar latitude,⌦eq is the
rotational rate of the equator and d⌦ is the di↵erence in rotation
rate between polar and equatorial regions. We use the new data
sets to obtain estimates of the di↵erential rotation parameters
(Table 2), following the method described by Petit et al. (2002).
For 2008 and 2009, we obtain a shear level of d⌦ = 0.12 rad d�1,
in very good agreement with the value obtained by P08. Values
derived for⌦eq are also in excellent agreement in 2007 and 2008
(with ⌦eq= 0.71 ± 0.01 rad d�1), but the measurement for 2009
provides us with a di↵erent estimate (⌦eq= 0.66 ± 0.01 rad d�1).
This apparent discrepancy may simply reflect the uncertainties
in this parameter. Errorbars listed in Table 2 are directly derived
from the �2 map in the ⌦eq-d⌦ plane and might be underesti-
mated, as suggested by Petit et al. (2002).

Using this procedure, the spectropolarimetric data are ad-
justed at a reduced �2 equal to 1.1 and 0.9, in 2008 and 2009,
respectively (Fig. 1). The �2

r value for 2008 equals that obtained
one year earlier, and the slightly smaller �2

r achieved in 2009 is
partly due to the higher relative noise in the data. The recon-
structed magnetic topologies are illustrated in Fig. 2, together
with the magnetic map obtained in 2007 (P08). In Table 2, we
list several numerical quantities derived from the spherical har-
monics coe�cients defining the magnetic geometries. As in P08,
errorbars listed in Table 2 are estimated by reconstructing a set
of magnetic maps using di↵erent input parameters for the in-
version code (with individual parameters being varied over the
width of their own errorbars). We note that the largest variations
in the output quantities are generally obtained by varying the

stellar inclination, because of the relatively large uncertainty in
this specific parameter.

2.3. Temporal evolution in the large-scale magnetic field

Between 2007 and 2008, the most striking evolution in the mag-
netic field distribution is a polarity reversal of the large-scale
field. In the ZDI maps of Fig. 2, this change is mostly visible in
the azimuthal component of the magnetic vector. A more quanti-
tative way of estimating the details of this sign switch consists of
tracking its origin in the evolution of the complex spherical har-
monics coe�cients ↵`,m, �`,m, and �`,m (defined by Donati et al.,
2006). Because of the uncertainty in the stellar rotation period
that prevents us from comparing, at 1-year intervals, magnetic
features that manifest themselves at specific rotation phases, we
choose to limit our comparison to axisymmetric features (de-
fined by modes with m = 0). We observe that all coe�cients
↵`,0, �`,0, or �`,0 with a magnetic amplitude greater than 1 gauss
(which only concerns modes with `  4) have a di↵erent sign
in both years, with the marginal exception of �3,0. Another no-
ticeable temporal evolution concerns the fraction of magnetic
energy stored in the axisymmetric field component (all spheri-
cal harmonics modes with m = 0), 61% of the large-scale mag-
netic energy being in axisymmetric modes in 2008, compared
to 73% in 2007. Another di↵erence is the fraction of magnetic
energy contained in modes with ` > 3 (14% and 27%, for 2007
and 2008, respectively, if the poloidal component is considered
alone; 5% and 13% if the toroidal field is also taken into ac-
count), suggesting that the field distribution is more complex in
2008.

A similar comparison between the 2008 and 2009 maps also
reveals a striking evolution in the field geometry. The main
change in the field distribution shows up as a much higher frac-
tion of the magnetic energy being stored in the poloidal field
component (about 80% in 2009, against less than 40% in the
two other data sets). This evolution occurs together with an in-
creased level of non-axisymmetry in the field distribution, with
only 36% of the magnetic energy showing up in modes with
m = 0. We also note that the poloidal component of the field
is dominated by the quadrupolar terms in 2009, while the dipole

• Manyetik etkin yıldızlarda B nasıl oluşur ve taşınır? 
• Gözlenen güçlü toroidal alanlar gerçek mi? Öyleyse nasıl oluşur? 
• Yıldız etkinliğini denetleyen doğrusal olmayan süreçler nelerdir?

Petit vd. 2009

YILDIZ MANYETİK ETKİNLİĞİ
AÇIK PROBLEMLER



GÜNEŞ’İN MANYETİK ÇEVRİMİ
GÖZLEMLER İN ÖZET İ

AA52CH06-Charbonneau ARI 23 May 2014 10:42

a

c

d

b

90N

30N

EQ

30S

90S

0
1000 1200

W
ol

f

Sp
oe

re
r

M
au

nd
er

D
al

to
n

1400 1600 1800 2000

20

40

60

80

100 200

150

100

50

0

1975 1980 1985 1990 1995

Date

Year A.D.

G
ro

up
 su

ns
po

t n
um

be
r

SS
N

-p
ro

xy
-1

0B
e 

[1
0 

ye
ar

 a
vg

.]
SS

N
-p

ro
xy

-1
4C

 [1
0 

ye
ar

 a
vg

.]

2000

–10G –5G 0G +5G +10G

2005 2010 2015

Figure 1
The solar magnetic field and its cycle. (a) A continuum image and (b) a line-of-sight magnetogram, both taken on March 30, 2001, by
the MDI instrument onboard SOHO (ESA/NASA). (c) A synoptic magnetogram (courtesy of D. Hathaway, NASA/MSFC),
constructed by zonally averaging full-disk magnetograms over successive solar rotations and stacking such averages into a time-latitude
diagram. (d ) The time series of the group sunspot number (SSN; in red; Hoyt & Schatten 1998) together with pseudoSSN time series
constructed from two cosmogenic radioisotopes (data courtesy of I. Usoskin, Sodankylä Obs.). These provide measures of the overall
activity levels at lower temporal resolution but over a much longer timespan than the sunspot record.
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GÜNEŞ DİNAMOSU
MANYET İK ÇEVR İM İÇ İN ÖNER İLEN MEKAN İZMALAR

Doğrusal?

Akı depolanması

Doğrusal olmayan etkiler

" etkisi

The Astrophysical Journal, 781:8 (15pp), 2014 January 20 Sanchez, Fournier, & Aubert

Figure 1. Illustration of the main processes at work in our solar dynamo model. The Ω-effect (left) depicts the transformation of a primary poloidal field into a
toroidal field by means of the differential rotation. The poloidal field regeneration is next accomplished either by the α-effect (top) and/or by the Babcock-Leighton
mechanism (bottom). In the α-effect case, the toroidal field at the base of the convection zone is subject to cyclonic turbulence. Secondary small-scale poloidal fields
are thereby created, and produce on average a new, large-scale, poloidal field. In the Babcock-Leighton mechanism, the primary process for poloidal field regeneration
is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
current one, which initiates a polarity reversal. The newly formed polar magnetic flux is transported by the meridional flow to the deeper layers of the convection zone,
thereby creating a new large-scale poloidal field.
(A color version of this figure is available in the online journal.)

of those equations governing the solar dynamo. Despite the
monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
of work has shown that axisymmetric mean-field solar dynamo
models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
locking of the solar cycle (Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000).

Such flux-transport models may make it possible to predict
the amplitude and duration of the upcoming solar cycles. The
first studies addressing this possibility (Dikpati et al. 2006;
Choudhuri et al. 2007) considered direct incorporation of data
into models, essentially by imposing (in a strong sense) surface
boundary values inherited from the data onto the model, whereas
an assimilation scheme would require this to happen in a weak
sense, through some flavor of the so-called best linear unbiased
estimator, whose goal is to combine in an optimal fashion the
data and the model, considering the uncertainties affecting both.
Independently of the data assimilation scheme one may resort
to, and as good as it may be, there exists an intrinsic limit to
its predictive power. Bushby & Tobias (2007) point out that this
limit arises either from the stochastic nature of the BL and
α-effects, or from nonlinear deterministic processes. They
stress, in addition, that the lack of constraints on the exact nature
of the key physical mechanisms which sustain these models and

govern their time-dependency, such as the α-effect, make their
ability to capture the essentials of the solar dynamo process
questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.

The same critic was made regarding weather prediction dur-
ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
dynamo is faithfully captured by mean-field models, one may

2
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WANG & SHEELEY 2009

JEOMANYETİK İŞARETÇİ

• Gezegenlerarası manyetik 
alan şiddetinin fonks. aa indisi 

• Minimumda Güneş’in kutup 
alanlarının şiddeti ile orantılı 

• Bir sonraki çevrimin genliği 
ile yüksek korelasyon

L12 WANG & SHEELEY Vol. 694
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Figure 1. Annual averages of the aa index (thick solid line), of its “interplanetary
component” aaI = aa − 0.097R − 10.9 (thin solid lines), and of the sunspot
number R (dotted line) for solar cycles 11–23 (1868–2008). The pre-1957 aa
measurements have been scaled upward as discussed by Svalgaard et al. (2004)
and Svalgaard & Cliver (2007). The formula for aaI is from Hathaway & Wilson
(2006).

In the following section, we discuss the physical basis of the
geomagnetic precursor, focusing on the relationship between
geomagnetic activity and the large-scale solar magnetic field.
In Section 3, we propose a new predictor derived from the aa
index, and use it to forecast the amplitude of cycle 24. Our
conclusions are summarized in Section 4.

2. GEOMAGNETIC ACTIVITY AND THE SUN’S DIPOLE
VECTOR

When averaged over timescales greater than a month, the
aa index is highly correlated with V 2

wB, where Vw is the solar
wind speed and B is the total IMF magnitude at Earth (see, e.g.,
Murayama & Hakamada 1975; Crooker et al. 1977; Rouillard
et al. 2007; Svalgaard & Cliver 2007). Figure 3(a) shows three-
rotation (82 day) running means of aa, Vw, and the near-Earth
radial IMF strength |Br | during 1967–2008. We see a clear
tendency for the peaks in aa to occur where Vw or |Br |, and
in most cases both Vw and |Br |, are enhanced; the correlation
coefficients calculated between aa and Vw, |Br |, and V 2

w|Br | are,
respectively, 0.73, 0.75, and 0.87.

The radial IMF strength, being independent of helio-
graphic latitude and longitude (Balogh et al. 1995; Smith
et al. 2001; Smith & Balogh 2008), is proportional to the Sun’s
total open flux, which in turn varies approximately as its net
dipole strength (Wang & Sheeley 2002). The magnetic dipole
vector may be decomposed into an equatorial (l = 1, |m| = 1)
and an axial (l = 1, m = 0) component, whose respective evo-
lutions during 1967–2008 are plotted in Figures 3(b) and 3(c).
Here, we have used photospheric field measurements taken by
the Wilcox Solar Observatory (WSO) during 1976–1995 and by
the Mount Wilson Observatory (MWO) during the remaining
intervals. The axial or axisymmetric component Dax varies in
a manner similar to the Sun’s polar fields, attaining its maxi-
mum strength at sunspot minimum and vanishing near sunspot
maximum. In contrast, the equatorial dipole component Deq
varies roughly in phase with sunspot activity, while undergo-
ing large-amplitude fluctuations lasting ∼1–2 yr. The equatorial
dipole strength is a function of both the level of sunspot activity
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Figure 2. Scatter plot of maximum yearly sunspot number Rmax vs. lowest
yearly value of the aa index near the preceding sunspot minimum, for cycles
12–23. Dashed line represents a linear least-squares fit to the data.

and its distribution in longitude; the highest peaks (including
those of 1982, 1991, and 2003) occur when large active re-
gions emerge with their east–west dipole moments “in phase”
with each other (Wang & Sheeley 2003). Unless maintained by
new flux emergence, Deq decays on the timescale of the surface
meridional flow, which transports the active region remnants
to midlatitudes, where the steep rotational gradients combine
with supergranular diffusion to annihilate the nonaxisymmetric
component of the large-scale field.

From Figure 3(b), we note a general tendency for strength-
enings of the equatorial dipole to coincide with peaks in the aa
index. This correlation arises because: (1) an increase in Deq
leads to an increase in the total open flux and IMF strength; (2)
during the declining phase of the cycle, when Dax is large, an
increase in Deq causes the Sun’s net dipole vector to tip toward
the equator, giving rise to recurrent high-speed streams at Earth
from the pair of large open field regions centered on the tilted
dipole axis; (3) an increase in Deq is often accompanied by an
increase in the number of fast CMEs (see Figure 6(b) in Wang
et al. 2006). Thus, for example, the unprecedented peak in the
aa index in 2003 can be attributed to the combination of a strong
equatorial dipole, the associated year-long recurrent high-speed
stream from a large lobe of the south polar hole, and a succes-
sion of major flare/CME events late in the year. As discussed
in Wang & Sheeley (2003), the ∼1.2–1.7 yr quasi-periodicities
intermittently detected in geomagnetic activity and the solar
wind speed (Silverman & Shapiro 1983; Richardson et al. 1994;
Paularena et al. 1995; Mursula & Vilppola 2004) may be a result
of stochastic, meridional-flow-limited fluctuations in Deq.

Given that it represents a fluctuating, relatively short-lived
component of the large-scale field which must be continually
regenerated by sunspot activity, the equatorial dipole cannot act
as a seed for the toroidal flux of the next cycle. The axisymmetric
dipole component, on the other hand, undergoes a systematic
evolution over the sunspot cycle, reflecting the tendency for
the north–south dipole moments of the active regions to be



“YANLIŞ” IŞARETLI AKI EKVATORU GEÇERSE… 

ÇEVRİMLERİN ÖNGÖRÜLEBİLİRLİĞİ

• Önemli miktarda ters işaretli 
akı diğer yarıküreye 
taşınabilir 

• Bir sonraki çevrimin genliğini 
belirlemede önemli belirsizlik 

• Ya minimumda olursa?  

• Kutup akısı ile aynı 
mertebede akı geçebilir 

• Büyük minimumları 
tetikleyebilir mi?

R. H. Cameron et al.: Limits to solar cycle predictability: Cross-equatorial flux plumes

Fig. 2. Kitt Peak synoptic magnetograms for Carrington rotations 1684–
1688 (starting dates: 1979, July 17, August 13, September 9, October 6,
November 3) are shown. The red ellipse outlines an example of nondif-
fusive cross-equatorial transport of magnetic flux. In this case the neg-
ative flux of a highly tilted bipolar region emerges across the equator.

where λ is latitude and we assume ηturb = 250 km2 s−1 (Cameron
et al. 2010). This diffusive component of the cross equatorial
flux transport is shown by the red lines in the left-hand pan-
els of Fig. 5. Explicitly, it is the amount of flux carried across
the equator by diffusion: how the flux arrives near the equator

Fig. 3. Kitt Peak synoptic magnetograms for Carrington rotations 1771–
1775 (starting dates: 1986, January 14, February 10, March 9, April 6,
May 3). The red circle outlines a magnetic bipole which emerges near
the equator. Because it is highly tilted, the positive magnetic flux is
almost entirely in the southern hemisphere and the negative flux is in
the northern hemisphere. A similar, but weaker, event with a smaller tilt
angle occurs towards the end of this event.

(before being transported across the equator by diffusion) will
in general involve a mixture of emergence, advection and
diffusion.
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Fig. 1. Longitudinally averaged radial mag-
netic field as a function of latitude and time
from the Kitt Peak Solar Observatory syn-
optic magnetograms. The gray scale is sat-
urated at ±10 G. The red circles illustrate
cross-equatorial flux plumes. Black indicates
negative magnetic field, white postive.

magnetic field, consisting of one map per Carrington rotation
(Harvey & Worden 1998). The maps for Carrington rotations
1625 to 2007 are based on the NSO Vacuum Telescope1, there-
after we used the synoptic maps based on the SOLIS telescope2.

2.1. Cross-equatorial flux plumes

The data gives the radial component of the magnetic field
strength as a function latitude, λ, longitude, φ, and time, t.
Hereafter we consider the longitudinally averaged field Br(λ, t),
which is shown in Fig. 1.

Notable features include the wings of the butterfly diagram
and the inclined features which extend from the active regions
towards the poles. These features were studied by Durrant et al.
(2001) and called “flux plumes”. Although they are fewer in
number, similar inclined features can be seen crossing the equa-
tor. The red ellipses in Fig. 1 outline the larger of these events.
We call these “cross-equatorial flux plumes”, owing to their sim-
ilarity with the “flux plumes”.

2.2. Emergence across the equator

Figure 2 shows the evolution of the magnetic field which pro-
duces the cross-equatorial flux plume in 1980 circled in Fig. 1.
A large bipolar region has emerged with the positive polarity flux
in the northern hemisphere and the negative polarity extending
to both sides of the equator. The axis of the bipolar pair, the line
connecting the centers of the opposite polarities, is inclined at al-
most 90 degrees to the equator. In this particular case the north-
south orientation of the bipolar pair is opposite to that given by
Joy’s law for this cycle. A second event that occurred in 1986,
in the declining stages of cycle 21, is shown in Fig. 3. Again we
have flux emergence across the equator; however in this case the
north-south alignment is in accordance with Joy’s law. The lat-
itudinal alignment of the bipolar groups is important because it
determines whether negative or positive flux is transported into
the northern hemisphere. For cycle 21, transporting positive flux
into the northern hemisphere acts to weaken the net flux in each
hemisphere at the subsequent minimum, whereas transporting
negative flux enhances the net flux at minimum. The two events
therefore mostly cancel each other for this cycle, as will be dis-
cussed in Sect. 4. There are several weak cross-equatorial flux
plumes around 1990, before another prominent event occured in
2002.

1 The NSO Vacuum Telescope data were obtained from
ftp://nsokp.nso.edu/kpvt/synoptic/
2 The SOLIS data was obtained from ftp://solis.nso.edu/
synoptic/level3/vsm/merged/carr-rot/

2.3. Emergence near the equator

A second type of event is shown in Fig. 4. Here a weaker, but
still highly tilted, bipolar region emerges close to the equator.
Both polarities emerge in the southern hemisphere, with the neg-
ative flux being closer to the equator. Negative flux is transported
across the equator, presumably driven by cross-equatorial flows.
This leads to a substantial amount of flux crossing the equator.

3. Measuring the cross-equatorial fluxes

The calculation of the cross-equatorial flux transport of magnetic
flux is discussed by Durrant et al. (2004), who also estimated the
diffusive component of the cross-equatorial flux transport during
cycle 22. The net (signed) magnetic flux in the northern hemi-
sphere is given by

FNH =

∫

NH
BrdA, (1)

and in the southern hemisphere by

FSH =

∫

SH
BrdA. (2)

Because∇ ·B = 0 these must satisfy FNH = −FSH. To reduce the
noise we define F = (FNH − FSH)/2, i.e. F is an estimate of the
flux in the northern hemisphere based on observations over both
hemispheres. The net magnetic flux transport across the equator
at the solar surface is then determined by dF/dt.

Because we are numerically evaluating the time derivative,
the measured cross-equatorial transport is noisy. One obvious
source of noise is the yearly apparent modulation of the polar
fields in Fig. 1, which is an artifact introduced by the variation of
the solar B-angle due to the inclination of the solar rotation axis
to the ecliptic. By averaging over 13, 27, or 54 Carrington rota-
tions (approximately 1, 2, and 4 years, respectively) this source
of noise is substantially reduced. The black lines in the left-hand
panels of Fig. 5 show the time history of dF/dt.

We also estimate the amount of cross-equatorial flux trans-
port which is due to diffusion of magnetic flux across the equator.
We consider the turbulent diffusion describing the random walk
of magnetic features associated with supergranulation, averag-
ing the magnetic field over supergranular scales using a box-car
filter with a width of 24 Mm. We then calculate the latitudinal
gradient of the magnetic field at the equator using centered fi-
nite differences and estimate the diffusive cross-equatorial flux
transport as
(

dF
dt

)

diffusive
= −2πηturb

∂Br

∂λ
|λ=0, (3)
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SOLAR PHYSICS

The crucial role of surface magnetic
fields for the solar dynamo
Robert Cameron* and Manfred Schüssler

Sunspots and the plethora of other phenomena occurring in the course of the 11-year
cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.

T
he basic concept for the large-scale solar
dynamo involves a cycle during which the
poloidal field and the toroidal field are
mutually generated by one another (1, 2).
The winding of the poloidal field by dif-

ferential rotation creates a toroidal field. A re-
versed poloidal field results from the formation
of magnetic loops in the toroidal field, which
become twisted by the Coriolis force owing to
solar rotation. In turn, the reversed poloidal field
then becomes the source of a reversed toroidal
field. In this way, the 11-year cycle of solar ac-
tivity is connected to a 22-year cycle of magnetic
polarity.
Hale et al. (3) discovered that the magnetic

orientations of the eastward and westward parts
of bipolar sunspot groups in one solar hemi-
sphere are the same during an 11-year cycle and
opposite in the other hemisphere. This implies
that the sunspot groups originate from a toroidal
field of fixed orientation during a cycle. Toroidal
flux of the opposite polarity would lead to sun-
spot groups violating Hale’s law. Because only a
small minority of the sunspot groups are actually
observed to violate this rule (4), opposite-polarity
toroidal field is largely irrelevant as a source of
sunspot groups. In other words, it is the hemi-
spheric net toroidal magnetic flux given by the
azimuthal average of the toroidal field that is rel-
evant for the formation of sunspot groups.
Here we use a simplemethod based on Stokes’

theorem to show that the emerged surface fields
determine the net toroidal flux generated by
differential rotation in a solar hemisphere. The
time evolution of the net toroidal flux in the
convection zone can thus be calculated with
only observed quantities (differential rotation and
field distribution at the surface).We compare the
resulting net toroidal flux with the observed
large-scale unsigned surface flux and find that
they vary in a similar manner.

We consider spherical polar coordinates,
ðr;q;fÞ, and the azimuthally averaged induction
equation of magnetohydrodynamics

∂B
∂t

¼ ∇$ ðU$ Bþ 〈u$ b〉 − h∇$ BÞ ð1Þ

where Bðr;qÞ and Uðr;qÞ are the f-averaged
magnetic field and plasma velocity, respective-
ly, and h is the magnetic diffusivity. Angular
brackets indicate the azimuthal average. The
term 〈u$ b〉 denotes the correlation of the fluc-
tuating quantities with respect to the azimuthal
averages, which gives rise to the a-effect and
to enhanced (“turbulent”) magnetic diffusiv-
ity (5).
We define the contour dS enclosing the area S

in ameridional plane of the Sun as shown in Fig. 1.
The direction of the contour is chosen such that
the vectorial surface element of S points into the
direction of positive azimuthal field, Bf. Applying
Stokes’ theorem to the integral of the induction
equation over S yields the time derivative of the
net toroidal flux, FN

tor, in the northern hemi-
sphere of the convection zone,

dFN
tor

dt
¼ d

dt

!
∫SBfdS

"

¼ ∫dS
!
U$ Bþ 〈u$ b〉 − h∇$ B

"
⋅ dl ð2Þ

where dS is the surface element of S and dl is the
line element along dS. An analogous procedure
provides the net toroidal flux in the southern
hemisphere, FS

tor.
Rotation is by far the dominant component

of the azimuthally averaged velocity, so that
we write U ¼ Uf f

ˇ

¼ ðWrsinqÞf

ˇ

, where Wðr;qÞ
is the angular velocity and f

ˇ

the unit vector in the
azimuthal direction. The effect of ∫dS〈u$ b〉 ⋅ dl
reduces to that of the turbulent magnetic dif-
fusivity, ht, since the contribution of the a-effect

to the generation of the toroidal field can be
neglected against that of differential rotation (1).
With ht ≫ h; we thus obtain

dFN
tor

dt
¼ ∫dSðU$ B − ht∇$ BÞ ⋅ dl ð3Þ

Guided by empirical results fromhelioseismol-
ogy (6, 7), we takeW to be independent of r in the
equatorial plane throughout the convection zone
(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
in a reference frame rotating with angular veloc-
ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
Fig. 1 contributes to the line integral of U$ B
along the contour dS. We obtain

∫dSðU$ BÞ ⋅ dl ¼ ∫
p=2

0 UfBrR⊙dq

¼ ∫
1

0ðW − WeqÞBrR
2
⊙dðcosqÞ ð4Þ

where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
be destroyed, and also in the equatorial segment
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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Sunspots and the plethora of other phenomena occurring in the course of the 11-year
cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.

T
he basic concept for the large-scale solar
dynamo involves a cycle during which the
poloidal field and the toroidal field are
mutually generated by one another (1, 2).
The winding of the poloidal field by dif-

ferential rotation creates a toroidal field. A re-
versed poloidal field results from the formation
of magnetic loops in the toroidal field, which
become twisted by the Coriolis force owing to
solar rotation. In turn, the reversed poloidal field
then becomes the source of a reversed toroidal
field. In this way, the 11-year cycle of solar ac-
tivity is connected to a 22-year cycle of magnetic
polarity.
Hale et al. (3) discovered that the magnetic

orientations of the eastward and westward parts
of bipolar sunspot groups in one solar hemi-
sphere are the same during an 11-year cycle and
opposite in the other hemisphere. This implies
that the sunspot groups originate from a toroidal
field of fixed orientation during a cycle. Toroidal
flux of the opposite polarity would lead to sun-
spot groups violating Hale’s law. Because only a
small minority of the sunspot groups are actually
observed to violate this rule (4), opposite-polarity
toroidal field is largely irrelevant as a source of
sunspot groups. In other words, it is the hemi-
spheric net toroidal magnetic flux given by the
azimuthal average of the toroidal field that is rel-
evant for the formation of sunspot groups.
Here we use a simplemethod based on Stokes’

theorem to show that the emerged surface fields
determine the net toroidal flux generated by
differential rotation in a solar hemisphere. The
time evolution of the net toroidal flux in the
convection zone can thus be calculated with
only observed quantities (differential rotation and
field distribution at the surface).We compare the
resulting net toroidal flux with the observed
large-scale unsigned surface flux and find that
they vary in a similar manner.

We consider spherical polar coordinates,
ðr;q;fÞ, and the azimuthally averaged induction
equation of magnetohydrodynamics

∂B
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¼ ∇$ ðU$ Bþ 〈u$ b〉 − h∇$ BÞ ð1Þ

where Bðr;qÞ and Uðr;qÞ are the f-averaged
magnetic field and plasma velocity, respective-
ly, and h is the magnetic diffusivity. Angular
brackets indicate the azimuthal average. The
term 〈u$ b〉 denotes the correlation of the fluc-
tuating quantities with respect to the azimuthal
averages, which gives rise to the a-effect and
to enhanced (“turbulent”) magnetic diffusiv-
ity (5).
We define the contour dS enclosing the area S

in ameridional plane of the Sun as shown in Fig. 1.
The direction of the contour is chosen such that
the vectorial surface element of S points into the
direction of positive azimuthal field, Bf. Applying
Stokes’ theorem to the integral of the induction
equation over S yields the time derivative of the
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neglected against that of differential rotation (1).
With ht ≫ h; we thus obtain
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Guided by empirical results fromhelioseismol-
ogy (6, 7), we takeW to be independent of r in the
equatorial plane throughout the convection zone
(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
in a reference frame rotating with angular veloc-
ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
Fig. 1 contributes to the line integral of U$ B
along the contour dS. We obtain
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p=2
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1
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where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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he basic concept for the large-scale solar
dynamo involves a cycle during which the
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The winding of the poloidal field by dif-
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only observed quantities (differential rotation and
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large-scale unsigned surface flux and find that
they vary in a similar manner.
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(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
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ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
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where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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Sunspots and the plethora of other phenomena occurring in the course of the 11-year
cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.

T
he basic concept for the large-scale solar
dynamo involves a cycle during which the
poloidal field and the toroidal field are
mutually generated by one another (1, 2).
The winding of the poloidal field by dif-

ferential rotation creates a toroidal field. A re-
versed poloidal field results from the formation
of magnetic loops in the toroidal field, which
become twisted by the Coriolis force owing to
solar rotation. In turn, the reversed poloidal field
then becomes the source of a reversed toroidal
field. In this way, the 11-year cycle of solar ac-
tivity is connected to a 22-year cycle of magnetic
polarity.
Hale et al. (3) discovered that the magnetic

orientations of the eastward and westward parts
of bipolar sunspot groups in one solar hemi-
sphere are the same during an 11-year cycle and
opposite in the other hemisphere. This implies
that the sunspot groups originate from a toroidal
field of fixed orientation during a cycle. Toroidal
flux of the opposite polarity would lead to sun-
spot groups violating Hale’s law. Because only a
small minority of the sunspot groups are actually
observed to violate this rule (4), opposite-polarity
toroidal field is largely irrelevant as a source of
sunspot groups. In other words, it is the hemi-
spheric net toroidal magnetic flux given by the
azimuthal average of the toroidal field that is rel-
evant for the formation of sunspot groups.
Here we use a simplemethod based on Stokes’

theorem to show that the emerged surface fields
determine the net toroidal flux generated by
differential rotation in a solar hemisphere. The
time evolution of the net toroidal flux in the
convection zone can thus be calculated with
only observed quantities (differential rotation and
field distribution at the surface).We compare the
resulting net toroidal flux with the observed
large-scale unsigned surface flux and find that
they vary in a similar manner.

We consider spherical polar coordinates,
ðr;q;fÞ, and the azimuthally averaged induction
equation of magnetohydrodynamics

∂B
∂t

¼ ∇$ ðU$ Bþ 〈u$ b〉 − h∇$ BÞ ð1Þ

where Bðr;qÞ and Uðr;qÞ are the f-averaged
magnetic field and plasma velocity, respective-
ly, and h is the magnetic diffusivity. Angular
brackets indicate the azimuthal average. The
term 〈u$ b〉 denotes the correlation of the fluc-
tuating quantities with respect to the azimuthal
averages, which gives rise to the a-effect and
to enhanced (“turbulent”) magnetic diffusiv-
ity (5).
We define the contour dS enclosing the area S

in ameridional plane of the Sun as shown in Fig. 1.
The direction of the contour is chosen such that
the vectorial surface element of S points into the
direction of positive azimuthal field, Bf. Applying
Stokes’ theorem to the integral of the induction
equation over S yields the time derivative of the
net toroidal flux, FN

tor, in the northern hemi-
sphere of the convection zone,

dFN
tor

dt
¼ d

dt

!
∫SBfdS

"

¼ ∫dS
!
U$ Bþ 〈u$ b〉 − h∇$ B

"
⋅ dl ð2Þ

where dS is the surface element of S and dl is the
line element along dS. An analogous procedure
provides the net toroidal flux in the southern
hemisphere, FS

tor.
Rotation is by far the dominant component

of the azimuthally averaged velocity, so that
we write U ¼ Uf f

ˇ

¼ ðWrsinqÞf

ˇ

, where Wðr;qÞ
is the angular velocity and f

ˇ

the unit vector in the
azimuthal direction. The effect of ∫dS〈u$ b〉 ⋅ dl
reduces to that of the turbulent magnetic dif-
fusivity, ht, since the contribution of the a-effect

to the generation of the toroidal field can be
neglected against that of differential rotation (1).
With ht ≫ h; we thus obtain

dFN
tor

dt
¼ ∫dSðU$ B − ht∇$ BÞ ⋅ dl ð3Þ

Guided by empirical results fromhelioseismol-
ogy (6, 7), we takeW to be independent of r in the
equatorial plane throughout the convection zone
(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
in a reference frame rotating with angular veloc-
ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
Fig. 1 contributes to the line integral of U$ B
along the contour dS. We obtain

∫dSðU$ BÞ ⋅ dl ¼ ∫
p=2

0 UfBrR⊙dq

¼ ∫
1

0ðW − WeqÞBrR
2
⊙dðcosqÞ ð4Þ

where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
be destroyed, and also in the equatorial segment
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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Sunspots and the plethora of other phenomena occurring in the course of the 11-year
cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.
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become twisted by the Coriolis force owing to
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flux of the opposite polarity would lead to sun-
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small minority of the sunspot groups are actually
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toroidal field is largely irrelevant as a source of
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time evolution of the net toroidal flux in the
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resulting net toroidal flux with the observed
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ogy (6, 7), we takeW to be independent of r in the
equatorial plane throughout the convection zone
(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
in a reference frame rotating with angular veloc-
ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
Fig. 1 contributes to the line integral of U$ B
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where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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Sunspots and the plethora of other phenomena occurring in the course of the 11-year
cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.

T
he basic concept for the large-scale solar
dynamo involves a cycle during which the
poloidal field and the toroidal field are
mutually generated by one another (1, 2).
The winding of the poloidal field by dif-

ferential rotation creates a toroidal field. A re-
versed poloidal field results from the formation
of magnetic loops in the toroidal field, which
become twisted by the Coriolis force owing to
solar rotation. In turn, the reversed poloidal field
then becomes the source of a reversed toroidal
field. In this way, the 11-year cycle of solar ac-
tivity is connected to a 22-year cycle of magnetic
polarity.
Hale et al. (3) discovered that the magnetic

orientations of the eastward and westward parts
of bipolar sunspot groups in one solar hemi-
sphere are the same during an 11-year cycle and
opposite in the other hemisphere. This implies
that the sunspot groups originate from a toroidal
field of fixed orientation during a cycle. Toroidal
flux of the opposite polarity would lead to sun-
spot groups violating Hale’s law. Because only a
small minority of the sunspot groups are actually
observed to violate this rule (4), opposite-polarity
toroidal field is largely irrelevant as a source of
sunspot groups. In other words, it is the hemi-
spheric net toroidal magnetic flux given by the
azimuthal average of the toroidal field that is rel-
evant for the formation of sunspot groups.
Here we use a simplemethod based on Stokes’

theorem to show that the emerged surface fields
determine the net toroidal flux generated by
differential rotation in a solar hemisphere. The
time evolution of the net toroidal flux in the
convection zone can thus be calculated with
only observed quantities (differential rotation and
field distribution at the surface).We compare the
resulting net toroidal flux with the observed
large-scale unsigned surface flux and find that
they vary in a similar manner.
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ðr;q;fÞ, and the azimuthally averaged induction
equation of magnetohydrodynamics
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where Bðr;qÞ and Uðr;qÞ are the f-averaged
magnetic field and plasma velocity, respective-
ly, and h is the magnetic diffusivity. Angular
brackets indicate the azimuthal average. The
term 〈u$ b〉 denotes the correlation of the fluc-
tuating quantities with respect to the azimuthal
averages, which gives rise to the a-effect and
to enhanced (“turbulent”) magnetic diffusiv-
ity (5).
We define the contour dS enclosing the area S

in ameridional plane of the Sun as shown in Fig. 1.
The direction of the contour is chosen such that
the vectorial surface element of S points into the
direction of positive azimuthal field, Bf. Applying
Stokes’ theorem to the integral of the induction
equation over S yields the time derivative of the
net toroidal flux, FN

tor, in the northern hemi-
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is the angular velocity and f
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the unit vector in the
azimuthal direction. The effect of ∫dS〈u$ b〉 ⋅ dl
reduces to that of the turbulent magnetic dif-
fusivity, ht, since the contribution of the a-effect

to the generation of the toroidal field can be
neglected against that of differential rotation (1).
With ht ≫ h; we thus obtain
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Guided by empirical results fromhelioseismol-
ogy (6, 7), we takeW to be independent of r in the
equatorial plane throughout the convection zone
(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
in a reference frame rotating with angular veloc-
ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
Fig. 1 contributes to the line integral of U$ B
along the contour dS. We obtain
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0 UfBrR⊙dq
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1

0ðW − WeqÞBrR
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where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
be destroyed, and also in the equatorial segment
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.
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convection zone can thus be calculated with
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where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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Sunspots and the plethora of other phenomena occurring in the course of the 11-year
cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.

T
he basic concept for the large-scale solar
dynamo involves a cycle during which the
poloidal field and the toroidal field are
mutually generated by one another (1, 2).
The winding of the poloidal field by dif-

ferential rotation creates a toroidal field. A re-
versed poloidal field results from the formation
of magnetic loops in the toroidal field, which
become twisted by the Coriolis force owing to
solar rotation. In turn, the reversed poloidal field
then becomes the source of a reversed toroidal
field. In this way, the 11-year cycle of solar ac-
tivity is connected to a 22-year cycle of magnetic
polarity.
Hale et al. (3) discovered that the magnetic

orientations of the eastward and westward parts
of bipolar sunspot groups in one solar hemi-
sphere are the same during an 11-year cycle and
opposite in the other hemisphere. This implies
that the sunspot groups originate from a toroidal
field of fixed orientation during a cycle. Toroidal
flux of the opposite polarity would lead to sun-
spot groups violating Hale’s law. Because only a
small minority of the sunspot groups are actually
observed to violate this rule (4), opposite-polarity
toroidal field is largely irrelevant as a source of
sunspot groups. In other words, it is the hemi-
spheric net toroidal magnetic flux given by the
azimuthal average of the toroidal field that is rel-
evant for the formation of sunspot groups.
Here we use a simplemethod based on Stokes’

theorem to show that the emerged surface fields
determine the net toroidal flux generated by
differential rotation in a solar hemisphere. The
time evolution of the net toroidal flux in the
convection zone can thus be calculated with
only observed quantities (differential rotation and
field distribution at the surface).We compare the
resulting net toroidal flux with the observed
large-scale unsigned surface flux and find that
they vary in a similar manner.

We consider spherical polar coordinates,
ðr;q;fÞ, and the azimuthally averaged induction
equation of magnetohydrodynamics

∂B
∂t

¼ ∇$ ðU$ Bþ 〈u$ b〉 − h∇$ BÞ ð1Þ

where Bðr;qÞ and Uðr;qÞ are the f-averaged
magnetic field and plasma velocity, respective-
ly, and h is the magnetic diffusivity. Angular
brackets indicate the azimuthal average. The
term 〈u$ b〉 denotes the correlation of the fluc-
tuating quantities with respect to the azimuthal
averages, which gives rise to the a-effect and
to enhanced (“turbulent”) magnetic diffusiv-
ity (5).
We define the contour dS enclosing the area S

in ameridional plane of the Sun as shown in Fig. 1.
The direction of the contour is chosen such that
the vectorial surface element of S points into the
direction of positive azimuthal field, Bf. Applying
Stokes’ theorem to the integral of the induction
equation over S yields the time derivative of the
net toroidal flux, FN

tor, in the northern hemi-
sphere of the convection zone,

dFN
tor

dt
¼ d

dt

!
∫SBfdS

"

¼ ∫dS
!
U$ Bþ 〈u$ b〉 − h∇$ B

"
⋅ dl ð2Þ

where dS is the surface element of S and dl is the
line element along dS. An analogous procedure
provides the net toroidal flux in the southern
hemisphere, FS

tor.
Rotation is by far the dominant component

of the azimuthally averaged velocity, so that
we write U ¼ Uf f

ˇ

¼ ðWrsinqÞf

ˇ

, where Wðr;qÞ
is the angular velocity and f

ˇ

the unit vector in the
azimuthal direction. The effect of ∫dS〈u$ b〉 ⋅ dl
reduces to that of the turbulent magnetic dif-
fusivity, ht, since the contribution of the a-effect

to the generation of the toroidal field can be
neglected against that of differential rotation (1).
With ht ≫ h; we thus obtain

dFN
tor

dt
¼ ∫dSðU$ B − ht∇$ BÞ ⋅ dl ð3Þ

Guided by empirical results fromhelioseismol-
ogy (6, 7), we takeW to be independent of r in the
equatorial plane throughout the convection zone
(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
in a reference frame rotating with angular veloc-
ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
Fig. 1 contributes to the line integral of U$ B
along the contour dS. We obtain

∫dSðU$ BÞ ⋅ dl ¼ ∫
p=2

0 UfBrR⊙dq

¼ ∫
1

0ðW − WeqÞBrR
2
⊙dðcosqÞ ð4Þ

where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
be destroyed, and also in the equatorial segment
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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The crucial role of surface magnetic
fields for the solar dynamo
Robert Cameron* and Manfred Schüssler

Sunspots and the plethora of other phenomena occurring in the course of the 11-year
cycle of solar activity are a consequence of the emergence of magnetic flux at the
solar surface. The observed orientations of bipolar sunspot groups imply that they
originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope
of the Sun. We show that the net toroidal magnetic flux generated by differential
rotation within a hemisphere of the convection zone is determined by the emerged
magnetic flux at the solar surface and thus can be calculated from the observed
magnetic field distribution. The main source of the toroidal flux is the roughly dipolar
surface magnetic field at the polar caps, which peaks around the minima of the
activity cycle.
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tivity is connected to a 22-year cycle of magnetic
polarity.
Hale et al. (3) discovered that the magnetic
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that the sunspot groups originate from a toroidal
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flux of the opposite polarity would lead to sun-
spot groups violating Hale’s law. Because only a
small minority of the sunspot groups are actually
observed to violate this rule (4), opposite-polarity
toroidal field is largely irrelevant as a source of
sunspot groups. In other words, it is the hemi-
spheric net toroidal magnetic flux given by the
azimuthal average of the toroidal field that is rel-
evant for the formation of sunspot groups.
Here we use a simplemethod based on Stokes’

theorem to show that the emerged surface fields
determine the net toroidal flux generated by
differential rotation in a solar hemisphere. The
time evolution of the net toroidal flux in the
convection zone can thus be calculated with
only observed quantities (differential rotation and
field distribution at the surface).We compare the
resulting net toroidal flux with the observed
large-scale unsigned surface flux and find that
they vary in a similar manner.
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ðr;q;fÞ, and the azimuthally averaged induction
equation of magnetohydrodynamics
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where Bðr;qÞ and Uðr;qÞ are the f-averaged
magnetic field and plasma velocity, respective-
ly, and h is the magnetic diffusivity. Angular
brackets indicate the azimuthal average. The
term 〈u$ b〉 denotes the correlation of the fluc-
tuating quantities with respect to the azimuthal
averages, which gives rise to the a-effect and
to enhanced (“turbulent”) magnetic diffusiv-
ity (5).
We define the contour dS enclosing the area S

in ameridional plane of the Sun as shown in Fig. 1.
The direction of the contour is chosen such that
the vectorial surface element of S points into the
direction of positive azimuthal field, Bf. Applying
Stokes’ theorem to the integral of the induction
equation over S yields the time derivative of the
net toroidal flux, FN

tor, in the northern hemi-
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line element along dS. An analogous procedure
provides the net toroidal flux in the southern
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the unit vector in the
azimuthal direction. The effect of ∫dS〈u$ b〉 ⋅ dl
reduces to that of the turbulent magnetic dif-
fusivity, ht, since the contribution of the a-effect

to the generation of the toroidal field can be
neglected against that of differential rotation (1).
With ht ≫ h; we thus obtain

dFN
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¼ ∫dSðU$ B − ht∇$ BÞ ⋅ dl ð3Þ

Guided by empirical results fromhelioseismol-
ogy (6, 7), we takeW to be independent of r in the
equatorial plane throughout the convection zone
(8), i.e., Wðr; p=2Þ ¼ Weq. This allows us to work
in a reference frame rotating with angular veloc-
ityWeq, for whichUf ¼ 0 in the equatorial plane.
We can further assume that the magnetic field
does not penetrate the low-diffusivity radiative
zone below the convection zone. Together with
Uf ¼ 0 along the rotational axis, these assump-
tions imply that only the surface segment (d) in
Fig. 1 contributes to the line integral of U$ B
along the contour dS. We obtain

∫dSðU$ BÞ ⋅ dl ¼ ∫
p=2

0 UfBrR⊙dq

¼ ∫
1

0ðW − WeqÞBrR
2
⊙dðcosqÞ ð4Þ

where Uf, W, and Br are to be taken at the solar
surface, r ¼ R⊙. This shows that the net toroidal
flux generated in the convection zone by the ac-
tion of differential rotation is determined by the
poloidal field threading the solar surface. Any
additional poloidal flux that is fully contained
within the convection zone would lead to equal
amounts of east-west– and west-east–orientated
toroidal flux, which do not contribute to the net
toroidal flux required by Hale’s law.
The diffusion term in Eq. 3 is most relevant

along the rotational axis, where toroidal flux can
be destroyed, and also in the equatorial segment
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Fig. 1. Integration contour for the application
of Stokes’ theorem.The contour (thick solid line)
on a meridional plane of the Sun is used to cal-
culate the net toroidal flux in the northern hemi-
sphere generated by the action of differential
rotation on the poloidal field. The thin solid line
represents the solar surface, the dashed line the
bottom of the convection zone.The rotation poles
are at the top and bottom.The contour consists of
a radial segment in the equatorial plane (a), a cir-
cular arc slightly below the bottom of the convec-
tion zone (b), a part along the axis of rotation (c),
and the solar surface (d).
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TOROİDAL ALAN HANGİ KOŞULLARDA TUTULABİLİR?
NE M İKTARDA, NEREDE, NE SÜREYLE?



E. Işık and V. Holzwarth: Flow instabilities of magnetic flux tubes. IV. 989

Fig. 13. The variation in the rise time for a linearly Parker-stable flux
tube in the mid-overshoot region, as a function of the duration and
maximum speed of the localised external downflow with σφ,θ = 5◦,
θm = 180◦, rm = 512 Mm (convection zone – overshoot layer bound-
ary) for the TF simulations. The field strength and latitude of the initial
tube are B0 = 7 × 104 G and λ0 = 10◦ (cf. Fig. 1). The diamonds rep-
resent the “stable” cases, for which no emergence takes place before
7 years, and the size of the filled circles is inversely scaled with the rise
time. The solid curve shows the convective turnover time as an indicator
for the flow duration, estimated as Hp/!max.

approximated generally in the form !⊥ ∼ |ξr | ℜe(ωf), where |ξr |
is the amplitude of the radial perturbation and ωf is the eigenfre-
quency of the fastest growing unstable wave mode. Substituting
this expression into Eq. (3), we obtain

α ∼ CD!⊥
πRt

∝ |ξr | ℜe(ωf ). (11)

For a given value of ℜe(ωf ), which is specified for a given set
of δ (depth), λ0, and B0, α increases with increasing perturba-
tion amplitude, as shown by numerical simulations in Sect. 2.2
(Fig. 2). Considering the relations obtained in Sect. 3.1, a per-
pendicular flow with !⊥ ≃ 1 m s−1 and m = 5 in the middle of
the overshoot region can displace a flux tube with B = 7× 104 G
to |ξr | ≃ 2500 km (cross symbols in Fig. 2). Substituting !⊥ into
Eq. (11), this amounts to α ≃ 3×10−7, which is of the same order
as the value chosen for the full curve in Fig. 2. Considering the
numerical results in Sect. 2.2 (see Fig. 3), we conclude that an
external flow with a velocity amplitude of 1–10 m s−1 perpen-
dicular to the tube axis leads to instability with a growth time
of the order of 1000 days (∼2.74 years) or longer. This range
of velocities is consistent with the estimates of van Ballegooijen
(1982) for the convective velocities in the overshoot region, sup-
porting the possibility of storing magnetic flux tubes that contain
fluxes of the order of 1021 Mx. In a more recent study, Brummell
et al. (2002) carried out 3D numerical simulations of penetrative
convection, which infer penetration depths between 0.02 Hp and
0.11 Hp, when they extrapolate the dimensionless numbers in
their simulations to solar values. These values are also compara-
ble to the radial perturbation amplitudes that we have assumed
here.

The numerical experiments presented in Sect. 2.3 have
shown us that the nonlinear instability occurring in the linearly
Parker-stable regime is induced mainly by the frictional coupling
of the flux tube with its surroundings. We have also found un-
stable flux tube configurations, for which the δ-effect plays a
significant role in the dynamics. These numerical experiments

were made without considering the drag force and in the bottom
of the overshoot layer, where the radial gradient of superadia-
baticity is steeper than in the remainder of the overshoot region.
This result may be relevant during the final phases of the de-
cay of the large-scale toroidal field in the Sun: if we assume
that the toroidal flux at the upper layers of the overshoot region
has already been removed to a large extent at this phase, a flux
tube that forms near the bottom of the overshoot region can be
destabilised rapidly by strong (possibly rare) convective down-
flows, leading to a few active regions during a solar minimum.
We conjecture that the δ-effect is not the main source of flux loss
from the overshoot layer, with a possible exception in the bottom
of the overshoot region, provided that overshooting convective
flows are sufficiently strong.

In test simulations, we have found that for perturbations
larger than about 10−3Hp (∼55 km), the growth rates start
to deviate from the predictions of linear stability analysis
(Ferriz-Mas & Schüssler 1995), because nonlinear effects gov-
ern the dynamics and determine the growth rate of instability,
through either the friction-induced instability (Sect. 2.2) or the
δ-effect (Sect. 2.3), depending on the depth and the longitudinal
flow speed.

In seeking possibilities of a slingshot effect that leads to
small-scale loops in thin flux tubes, we have found that this effect
is inefficient in removing magnetic flux from the overshoot re-
gion. The common result of the simulations is that a loop driven
by a transient downflow hits the radiative zone and bounces back
rapidly. However, in its way through the overshoot region it is
strongly decelerated mainly by friction.

In a parameter study surveying analytical estimates of
the displacement amplitude as a function of field strength
(Sect. 3.1.2), we have found that a flow pattern with m = 20
and !⊥ = 26 m s−1 acting on a tube with B0 = 105 G leads to
a perturbation of about 300 km. The corresponding difference
in the superadiabaticity of the stratification is ∆δ ≃ 10−7 (see
Fig. 5). Therefore, we do not expect azimuthally periodic flows
with short wavelengths (m ! 20) to trigger flux tube instabilities
for B0 " 105 G, provided that the displacement is less than about
300 km, in other words, !⊥ " 26 m s−1.

After understanding the fundamental effects of azimuthally
periodic flows on flux tubes, we have considered the case of a
localised downflow in Sect. 3.2. For a given flow pattern, we
have calculated the evolved states of flux tubes with various field
strengths corresponding to linearly Parker-stable cases, using the
steady-state approximation in conjunction with numerical simu-
lations. The experiments presented in Fig. 11 can also be inter-
preted in terms of a toroidal field strength increase with time,
in the rising phase of solar activity. As the toroidal field is am-
plified, localised downflows will have stronger disruptive effects
on flux tubes, owing to the increasing internal flow speed, which
is determined by the mechanical equilibrium condition. For a
stationary downflow, we thus suggest that the lower limit to the
field strength for which flux loops start entering the convection
zone is of the order of 5 × 104 G for the middle of the overshoot
region.

Proceeding to non-stationary, transient flows, we have set
up a survey of simulations for B0 = 7 × 104 G in the middle
of the overshoot region for Gaussian time profiles (TF case).
Depending on the dynamical properties of the downflow, we
have calculated the evolution of a flux tube with an upper time
limit of 7 years. However, in the first 7 years of an activity
cycle, the amplification of the large-scale toroidal field in the
tachocline cannot be neglected. If a flux tube with a sub-critical
field strength, say B0 = 7 × 104 G, remains in the overshoot

DIŞ AKIŞLAR ALTINDA DOĞRUSAL VE D.OLMAYAN KARARLILIK

MANYETİK AKI TÜPLERİNİN DEPOLANMASI

• Dış akışların ince akı tüplerine 
etkileri (konvektif fırlatma b.) 

• Akış genliği ve süresi için üst 
sınırlar 

• İnce manyetik akı tüplerinin 
fırlatma bölgesinde 
depolanması: Kısıtlar 

• Akış hızı genliği ~50 m/s 

• Karşılaştırma: Miesch vd. 
(2012) min. konv. hız ~ 50 m/s 

• Karş.: Karışım uzunluğu (——)
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POLOİDAL ALAN ÜRETİMİNİN SINIRLANMASI
D İNAMO NASIL DOYUMA ULAŞ IR?
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DOYUM DÜZENEĞİ OLUŞTURAB İL İR M İ? 

ETKİN KUŞAKLARA DOĞRU AKIŞLAR

• Etkin bölgelerde ışınımsal 
entropi kaybı     manyetik akı 

• Eğiklik açısını azaltabilir mi?  

• Çevrim şiddeti ile ters ilişki? 
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Figure 5. Selective AR properties of Cycle 24. (a) Sunspot butterfly diagram constructed from the DPD sunspot catalogue (Győri et al. 2011) overplotted on Br .
Magnetic data before May 2010 are from MDI. Each circle represents a NOAA AR with umbrae larger than 10−5 solar hemisphere surface area. The symbol size is
proportional to the maximum sunspot area within ±30◦ of central meridian. The color indicates a poloidal field proxy for individual ARs, P ∝ Φd sin α ∝ d2.3 sin α,
where d is the polarity separation and α the tilt, with Φ ∝ d1.3 (Wang & Sheeley 1989). For north, ARs with normal tilt are blue; inverted tilt, red. For south it is the
opposite. A blue symbol is expected to contribute positive flux to the poleward surge. ARs with inverted tilt do exist when the surge field is of the trailing sunspot
polarity. Ellipses denote regions devoid of major ARs. Inclined dotted lines show the band λc ± 10◦. (b) Inflows around one recurrent region AR 11106 (top) and
11112 (bottom). From left to right, panels show parts of synoptic maps of Br , δux (residual zonal flow velocity), and δuy . The converging flow pattern is extensive and
field-dependent. Contours are at ±10 and ±20 m s−1.

a consequence of increased radiative loss due to strong magnetic
field (Spruit 2003; Gizon & Rempel 2008).

A feedback mechanism naturally arises: higher Φ leads to
greater positive P, but also induces stronger converging flow,
which effectively reduces the polarity separation, or P (Jiang
et al. 2010). The dependence of the meridional flow on the
AR field provides nonlinearity to the process. The inclusion
of such a local perturbation improves the SFT modeling of
the cycle amplitudes (Cameron & Schüssler 2012). We note
that the argument does not preclude a background speed
change (González Hernández et al. 2008). Prescribing faster
background meridional flows during stronger cycles actually
improves the SFT modeling of the open flux (Wang et al. 2002).
More work is required to disentangle the global and local effects.

We finally note that the radial-field assumption, Br = Blµ
−1,

was originally inferred from the evolution of LOS field at
relatively low resolution (Svalgaard et al. 1978; Wang & Sheeley
1992). With the advent of new instrumentations such as HMI,

it is ultimately desirable to utilize higher resolution vector
observations to better constrain Br. To this end, we perform
a preliminary comparison between the 720 s HMI LOS and
vector data. In unipolar flux patches in the polar region, the Bl
component of the vector field exhibits excellent agreement with
the LOS data (see also Hoeksema et al. 2014). The nominal Br
from vector data, however, appears stronger than that obtained
using the LOS data and the radial-field assumption. Preliminary
analysis suggests that field vectors in these flux patches deviate
from the radial direction toward the poles.

Previous studies have found systematic deviation from the
radial direction either toward (Ulrich & Tran 2013) or away
from (Gosain et al. 2013) the poles. The deviation is expected
to be small, otherwise a large annual modulation would appear
in the inferred Br profile (see Figure 2(c)). Any resolution using
vector measurements must take into account the two following
issues. First, the vector field can be meaningfully retrieved only
in these patches where the polarization signal is high. In the
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M. Dasi-Espuig et al.: Sunspot tilt angles and strength of the solar cycle

3.2. Cycle parameter definitions

For the parameter study we focus on three main characteristics of
a solar cycle: strength, amplitude, and length. Strength is defined
as the total surface area covered by sunspots throughout a given
solar cycle. We calculate it from the daily sunspot area data set
compiled by Balmaceda et al. (2009) as the integral of sunspot
area over the duration of each cycle. This record is used since
it has significantly fewer data gaps than the MW and KK data
sets, as discussed in Sect. 2.2. The cycle amplitude is the high-
est value of monthly averaged sunspot number and the length is
the period of time between two consecutive minima. Times of
solar activity minimum, amplitudes, and the lengths of cycles
are taken from the National Geophysical Data Centre; http://
www.ngdc.noaa.gov/stp/SOLAR/getdata.html.

We looked for possible relationships of these parameters
with four different quantities based on the tilt angles: cycle mean
tilt angle, ⟨α⟩, cycle mean tilt angle normalised by the mean lat-
itude of sunspots during that cycle, ⟨α⟩/⟨λ⟩, cycle mean area-
weighted tilt angle, ⟨αω⟩, and the cycle mean area-weighted
tilt angle normalised by the mean latitude of sunspots dur-
ing the same cycle, ⟨αω⟩/⟨λ⟩. (For a brief discussion of how
these choices are influenced by the scatter in the tilt angles see
Appendix A). The area-weighted tilt angles are used to give
more importance to the bigger groups, which exhibit less scatter,
and the normalised tilt angles are considered in order to remove
the effect of the latitudinal dependence (Joy’s law) on the cycle-
averaged (area-weighted) tilt angles. Note that for the MW data
set, cycles 15 and 21 are not taken into account in the relation-
ships concerning ⟨α⟩ and ⟨αw⟩ due to their incompleteness and
could be thus biased by Joy’s law. This is not the case for the
quantities ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ since normalising by the mean
latitude removes this source of bias. Sunspots in stronger cy-
cles lie at higher latitudes (Solanki et al. 2008), so that simply
due to Joy’s law these cycles would have larger mean tilt angles.
Dividing by the mean latitude largely removes this difference
(both, Joy’s law and the dependence of mean latitude on cycle
strength are linear), so that ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ indicate intrin-
sic changes of Joy’s law from cycle to cycle.

3.3. Relationships within the same cycle

We first investigate the possible relationship of the cycle aver-
aged sunspot tilt angles with the three solar cycle parameters of
the same cycle. These relations may help to shed light on the un-
derlying magnetic flux tubes at the base of the convection zone
and the processes that affect them on their way to the surface
(in the case of the strength and amplitude of the cycle) and on
the possibility that the tilt angles of active regions are involved,
along with other features (e.g. meridional flow), in the regula-
tion of the cycle period of the dynamo (in the case of length), or
conversely are influenced by it.

We calculated linear correlation coefficients between the
3 solar cycle global parameters and the 4 quantities based on
the tilt angles (see Sect. 3.2). Due to the low number of cycles,
we also determined the probability that the correlations are due
to chance (P). These are calculated from the probability density
function of the student’s t-distribution, which depends both on
the correlation coefficient and the number of points in the sam-
ple. All the values are listed in Table 2 for MW and KK data.
Table 2 suggests that both the strength and the amplitude of a
cycle show a significant negative correlation with the average
tilt of the same cycle, ⟨α⟩, for at least KK data. For MW data,
the probabilities that the correlations are due to chance, P, are

Fig. 4. Cycle averaged tilt angle normalised by the emergence latitude
vs. strength of the same cycle. The error bars represent 1σ errors and
the dashed line is a linear fit to the points. Panel a) displays the results
based on MW data (rc = −0.95) , where cycles 15 and 21 are shown as
squares and dashed lines for the error bars, and panel b) on the KK data
set (rc = −0.93).

about 30%, but for KK data (that includes both cycles 15 and
21), the corresponding probabilities are lower than 10%. These
correlations are significantly strengthened once we eliminate the
enhanced effect of Joy’s law on cycles with sunspots on average
at higher latitudes by considering ⟨α⟩/⟨λ⟩. The probabilities then
fall to values below 2% for both MW and KK data sets. For the
area-weighted tilt angles, the correlation coefficients are weaker.
Although these are also strengthened after the normalisation by
⟨λ⟩, reaching probability values below 3%, they remain slightly
higher than for ⟨α⟩/⟨λ⟩. The correlations between the length and
the 4 tilt angle based parameters are in general low, of low con-
fidence and inconsistent in sign between the two data sets.

Figure 4 shows ⟨αi⟩/⟨λi⟩ versus S i, where i is the cycle num-
ber. The dashed line represents a linear fit to the points and the
error bars correspond to 1σ errors calculated by means of er-
ror propagation, where the errors for the mean tilt angle and the
mean latitude correspond to their standard error. The error bars
have been calculated assuming Gaussian statistics and are thus
overestimated. In MW data (Fig. 4a) cycles 15 and 21 are repre-
sented by squares and dashed lines for the error bars to denote
their incompleteness. Note that all data points lie roughly within
1σ of the regression lines. This suggests that given the accuracy
of the measured tilt angles (given largely by the scatter shown by
active regions) the obtained correlation coefficients are near the
maximum value achievable for data with such large uncertainty.
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EVET, DOYUM DÜZENEĞİ OLUŞTURAB İL İR.

ETKİN KUŞAKLARA DOĞRU AKIŞLAR

• ÇMB benzetimleri: Poloidal akının üretimine 
sınırlama (Jiang, Işık, vd. 2010) 

• Çevrim benzetimleri: YAT modellerinde daha 
yüksek korelasyonlar  
(Cameron & Schüssler 2012)
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Figure 2. Evolution of the magnetic field distribution resulting from a single BMR with an initial unsigned flux of 1.9 × 1023 Mx emerging at t = 0 at a mean latitude
of 15◦ and with a tilt angle of 5.◦4. Each row shows three snapshots (after 4, 12, and 24 Carrington rotations, respectively). The top row corresponds to the case without
meridional flow perturbation (v0 = 0, black curve in Figure 1). The rows below show the cases with perturbed flow (v0 = 5 m s−1, ∆λv = 15◦) centered at different
latitudes: λc = ±5◦ (second row, blue curve in Figure 1), λc = ±15◦ (third row, red curve in Figure 1), and λc = ±25◦ (bottom row, green curve in Figure 1). The
dashed lines indicate the equator while the full lines denote the central latitudes, ±λc , of the flow perturbation. Magnetic field strengths are given in Gauss. The full
time evolution for these cases can be viewed with the aid of the animations provided in the online edition of the journal.

(A color version and animations [a, b, c] of this figure are available in the online journal.)

net effect is a slight reduction of the contribution to the polar
field.

These results show that the emergence location of a BMR
relative to the position of the bands of flow perturbation is im-
portant for its effect on the development of the polar field. Note

that the (axisymmetric) meridional flow perturbation considered
here results from the cumulative effect of the individual inflows.
A given active region (which can appear anywhere in the activity
belt) therefore experiences the superposition of these inflows,
which need not necessarily be centered on this active region.
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Fig. 4. Correlation diagrams for the maxima of Φdipole during activity minima between cycles n − 1 and n from the SFT simulation vs. the maxima
of the sunspot number of the the cycle preceding the minimum (n−1, left panels) and of the subsequent cycle (n, right panels), respectively. Upper
row: case without inflows; lower row: reference case with inflows. Numbers within symbols give the index, n, of the cycle following the respective
activity minimum. Linear regressions are indicated by the dashed lines.

(lower left panel; r = 0.38, p = 0.31), the correlation with Rmax
of the subsequent cycle is highly significant in this case (lower
right panel; r = 0.82, p = 0.0065), which is comparable to the
empirical correlation based on the open heliospheric flux.

These results show that the inflows towards the activity belts
provide an important nonlinearity in the evolution of the Sun’s
poloidal field at the solar surface. This conclusion follows essen-
tially from the magnitude of the modeled inflows and is largely
independent of the model parameters. Furthermore, our results
strongly suggest that the latitudinal inflows towards the activity
belts have a dominant influence on the strength of the subse-
quent cycle and provide a nonlinear feedback mechanism for a
BL-type dynamo. While other nonlinear processes might also
play a role, the high correlations found here suggest that their
effect is probably rather limited. Further work is going to assess
the extent to which the good correlation with the observed cy-
cle strengths found here depends on the SFT parameters and on
our model of the inflows. Here we simply note that the param-
eters used in this study are essentially those of Cameron et al.
(2010, SFT parameters) and of Cameron & Schüssler (2010, in-
flow model), which all are based on observational constraints.

The high sensitivity of the axial dipole strength on the ampli-
tude of the inflows is consistent with the large variation of the cy-
cle amplitudes in the historical record, indicating also that rather
weak fluctuations of the surface distribution of active regions

could temporarily switch off the BL-type dynamo and may drive
the system into an extended minimum state.

4. Conclusion

Our SFT simulations show that magnetic-field-dependent latitu-
dinal inflows converging towards the activity belts significantly
affect the build-up of the polar field by modifying the cross-
equator transport of magnetic flux. The resulting amplitudes of
the magnetic flux contained in the axial dipole component dur-
ing activity minima correlate well with the empirically derived
values of the open heliospheric flux during these periods. The
inflows strengthen the axial dipole in weaker cycles, for which
parts of the inflows provide enhanced cross-equator transport of
magnetic flux. For strong cycles, the reduction of the tilt angles
of bipolar magnetic regions by the converging inflows dominates
and leads to a weakening of the axial dipole. Consistent with the
empirical results, the SFT simulations including latitudinal in-
flows show a strong correlation between the axial dipole around
activity minimum and the observed maximum sunspot number
of the subsequent cycle. This indicates that the inflows are a key
ingredient in determining the amplitude of solar cycles by pro-
viding a nonlinear feedback mechanism for the saturation of a
Babcock-Leighton-type dynamo mechanism.
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ABSTRACT

The average tilt angle of sunspot groups emerging throughout the solar cycle determines the net magnetic flux
crossing the equator, which is correlated with the strength of the subsequent cycle. I suggest that a deep-seated,
non-local process can account for the observed cycle-dependent changes in the average tilt angle. Motivated by
helioseismic observations indicating cycle-scale variations in the sound speed near the base of the convection zone,
I determined the effect of a thermally perturbed overshoot region on the stability of flux tubes and on the tilt angles
of emerging flux loops. I found that 5–20 K of cooling is sufficient for emerging flux loops to reproduce the
reported amplitude of cycle-averaged tilt angle variations, suggesting that it is a plausible effect responsible for the
nonlinearity of the solar activity cycle.

Key words: Sun: activity – Sun: interior – Sun: magnetic fields – sunspots

1. INTRODUCTION

One of the unsolved problems of the solar activity cycle is
the physical nature of the mechanism(s) underlying the
observed variations in cycle amplitude (Charbonneau 2010).
Among several possibilities, reduction of poloidal flux
generation by reducing the average tilt angle of bipolar
magnetic regions has recently been considered as a plausible
candidate. Analysis of tilt angle data from Mt. Wilson and
Kodaikanal observatories between solar cycles 15–21 by Dasi-
Espuig et al. (2010) has led to the discovery that the cycle-
averaged sunspot group tilt angle was inversely correlated with
the cycle strength. In terms of the Babcock–Leighton dynamo
process, this means that the surface source for the poloidal field
becomes weaker for stronger cycles, potentially limiting the
strength of the next cycle.

A possible explanation for the observed anti-correlation is
based on the effective reduction of the tilt angle by inflows
toward activity belts, which are observed by local helioseismic
techniques (González Hernández et al. 2008). Incorporation of
such inflows into surface flux transport models has shown the
efficiency of this mechanism in limiting the solar axial dipole
moment (Cameron et al. 2010; Jiang et al. 2010; Cameron &
Schüssler 2012).

As already discussed by Dasi-Espuig et al. (2010),
systematic changes in the tilt angle can also be led by changes
in the internal structure of the lower convection zone, a
potential location for the origin of magnetic flux loops which
produce sunspot groups. An observational hint came from
global helioseismology of low-degree oscillation modes by
Baldner & Basu (2008), who found a statistically significant
reduction in the acoustic wave speed near the base of the
convection zone between the minimum and maximum of cycle
23. A temperature perturbation mainly in the same direction
(cooling) was predicted by Rempel (2003), who considered a
magnetic layer near the base of the convection zone and
obtained time-dependent solutions for radial heat transport by
including radiative heating from below, in the presence of an
imposed horizontal magnetic field reaching 105 G.

In addition to radiative effects on stratification, stronger
cycles possibly involve more frequent flux tube explosions in
the midst of the convection zone (Moreno-Insertis et al. 1995;

Rempel & Schüssler 2001; Hotta et al. 2012). This can also
lead to a decrease in the radial entropy gradient, hence a
decrease in the (negative) superadiabaticity in the lower
convection zone.
In both the convection quenching and the entropy mixing

scenarios, the convection zone would be increasingly stabilized
for stronger magnetic fields. Consequently, the critical field
strength for the onset of flux tube instability would be raised
with the cycle strength. Flux tubes would then become unstable
at higher field strengths, emerge at the surface with smaller tilt
angles owing to stronger tension force.
Motivated by the helioseismic observations and the

theoretical arguments summarized above, I determine the
variation in the thermal perturbation required to account for the
observed changes in the cycle-averaged tilt angle. The results
indicate that a thermodynamic cycle in phase with the activity
cycle at the base of the convection zone can be responsible for
the nonlinear saturation of the solar dynamo.

2. THE MODEL

I use a one-dimensional stratification model of the solar
convection zone (Skaley & Stix 1991), which uses the non-
local mixing length formalism of Shaviv & Salpeter (1973).
This model allows for a weakly subadiabatic lower convection
zone below 0.775 Re, extending down to where the convective
heat flux changes sign at about 0.736 Re. The convective
overshoot region extends from this location down to 0.721 Re,
with a thickness of about 104 km.

2.1. Perturbations to the Stratification

To approximate the effect of radiative heating of a magnetic
layer in the overshoot region as estimated by Rempel (2003), I
model the change in the stratification simply as a decrease in
the temperature with an asymmetric piecewise Gaussian
perturbation of the form
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• Ses hızı tabanda azalıyor  
(23. çevrim min-max) 

• Yavaşlama deseni, yüzey 
manyetogramları ile ilişkili 

andwe cannot identify any physical significance in this eigenvector.
The remaining eigenvectors are statistically consistent with Gauss-
ian noise distributed around zero. We conclude, therefore, that
the temporal variation of the MDI frequencies is dependent on a
linear combination of x1 and x2 alone. In Figure 3, we show two
data sets reconstructed from the first two eigenvectors. This fig-
ure shows that the PCA decomposition does indeed accurately
capture the original data while significantly reducing the random
scatter in the data. The residuals normalized by the errors are plot-
ted, and are consistent with Gaussian noise, with distributions of
1.1 and 0.9 ! for the two cases. Having confirmed that the third
and subsequent eigenvectors are Gaussian noise, we do not con-
sider them further in this paper. This reduction in noise is impor-
tant for attempting to invert the small signatures we are looking at
here.

The fact that the PCA is applied to a set of mode sets relative
to a single base set raises the possibility that we are unduly in-
fluenced by the choice of that base set. We therefore repeat the
PCA taking a base set from halfway up the solar cycle: MDI set
2224 (start date: 1999 February 3, end date 1999April 16, and an
activity level during the 72 day period of F10:7 ¼ 130:7 SFU).

Fig. 5.—Inversion for sound speed of the x1 eigenvector. Top: Inversion of the MDI data. Bottom: Inversion of the GONG data. The solid cyan line is the result from
the RLS inversion (the dotted lines are the vertical error bounds). The red points are the results from the SOLA inversion. The horizontal dashed line is the zero point. The ver-
tical dashed line represents the location of the base of the convection zone. At the convection zone base, the MDI inversion results show a clear depression in sound speed at
high activity (the sense of the inversion is low activity minus high activity) and an enhancement in the tachocline region. The depression is matched in the GONG inver-
sion results. The location of this feature, although slightly deeper, is within the horizontal errors of the MDI result.

Fig. 6.—Change in inferred sound speed as function of activity level (10.7 cm
radio flux) for different radii around the base of the convection zone. The shaded
regions show the errors for each set of inversions.

BALDNER & BASU1354 Vol. 686

is very different from the one they expected from a change in the
base of the convection zone. This implies that, even if the change
we are detecting is thermal in nature, it is unlikely to be related in
any way to a change in the position of the base of the convection
zone.

These inversions have been done assuming that the frequency
differences are a result of a change in sound speed only. It is al-
most certain, however, given how tightly correlated this change
is with solar activity, that the observed changes are related in some
way to changes in the internal magnetic fields. What we have
really inverted for, therefore, is a change in the wave speed. If
we assume that the entire change is due to a change in the wave
propagation speed due the presence of magnetic fields, in other
words that !c2/c2 ! v2A/c

2, as in Basu et al. (2004) we can ob-
tain a value for B. The change at the base of the convection zone
is !c2/c2 ¼ (7:23 # 2:08) ; 10$5, which implies amagnetic field
strength of 290 kG. This is consistent with the results of earlier
authors—Goode&Dziembowski (1993) placed an upper limit of
1 MG on the toroidal field at the base of the convection zone, and
Basu (1997) found that the magnetic field in this region could not
exceed 300 kG. Chou & Serebryanskiy (2002) found somewhat
stronger fields (400Y700 kG).

3.2. Latitudinal Changes

The MDI and GONG data sets also contain splitting coeffi-
cients. The even-order coefficients contain information about the
nonspherically symmetric structure in the solar interior. Because
the surface manifestations of solar activity are strongly latitudin-
ally dependent, we have used these coefficients to study the tem-

poral variability of structure at different latitudes. The frequencies
corresponding to different latitudes are computed using equation
(2). The PCAprocedure is performed for each latitude aswas done
with the mean frequencies, and as usual is done with respect to set
1216. The first eigenvector for six different latitudes is shown in
Figure 7. When plotted as a function of frequency, the latitudes
from the equator to 30% showa similar frequency dependence as in
the case of the mean frequencies in Figure 1. When plotted as a
function of rt, we see change at and below the convection zone
base. The higher latitudes show no structure, and the eigenvectors
for these latitudes are consistent with Gaussian noise. The scaling
coefficients for each latitude as a function of time are shown in
Figure 8, along with the surface magnetic field. Like the scaling
coefficients for the mean frequencies shown in Figure 2, the lat-
itudinal scaling coefficients closely follow the surface activity.
We show the sound speed inversions for the equator, 15%, 30%,

and 45% in Figure 9. The errors in the eigenvectors are larger here
than for themean frequencies, in large part because each frequency
is a combination of mean frequency and splitting coefficients, each
with their own errors. Nevertheless, there are several points of in-
terest in these inversions. The first is a clear sound speed change for
radii greater than approximately r ¼ 0:86 R& at 15% and the equa-
tor. The change seen in the SOLA inversion results is well matched
in this region by the RLS inversion results, and the significance
of the change approaches 2 ". There is the possibility, although
less statistically significant, of a change at greater depth, i.e.,
approximately r ¼ 0:82 R&. At 30

%, a change in sound speed
through the tachocline is seen in the RLS results, but it does not
appear to be as clear in the SOLA results. It is unclear whether or

Fig. 8.—Scaling coefficients as a function of time and latitude. Top: Coefficients for each individual eigenvector x1(# ). Bottom: Scaling coefficients for all the latitudes
as a function of the x1(15

%). This shows how the changes represented by that eigenvector change as a function of both time and latitude. The average unsigned magnetic
flux fromMDI Carrington rotation synoptic maps over each 72 day period is shown in contour. The contours are spaced every 52 G, with the lowest at 56.5 G. The vertical
bars in 1998 are gaps in MDI coverage due to spacecraft problems.
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ABSTRACT

The frequencies of solar oscillations are known to change with solar activity.We use principal component analysis
to examine these changes with high precision. In addition to the well-documented changes in solar normal mode os-
cillations with activity as a function of frequency, which originate in the surface layers of the Sun, we find a small but
statistically significant change in frequencies with an origin at and below the base of the convection zone.We find that
at r ¼ (0:712þ0:0097

#0:0029
) R$, the change in sound speed is !c2/c2 ¼ (7:23 % 2:08) ; 10#5 between high and low activity.

This change is very tightly correlated with solar activity. In addition, we use the splitting coefficients to examine the
latitudinal structure of these changes.We find changes in sound speed correlated with surface activity for rk 0:9 R$.

Subject headinggs: Sun: activity — Sun: helioseismology — Sun: interior

1. INTRODUCTION

Normal modes of oscillation of the Sun have provided a
powerful tool to peer into the solar interior. In particular, mod-
ern experiments, both ground- and space-based, have measured
the intermediate-degree global oscillation spectrumwith high pre-
cision since the beginning of solar cycle 23. Accurate determina-
tions of interior structure and dynamics are now possible (see,
e.g., review by Christensen-Dalsgaard 2002). These measure-
ments contain a wealth of information about the fundamental
causes of solar variability.

It is generally believed that the seat of the solar dynamo is located
at the base of the convection zone (e.g., review by Charbonneau
2005). Because helioseismology provides the only direct mea-
surements of this region of the solar interior, these results can
play an important role in constraining dynamo theories. In par-
ticular, a number of authors have attempted to use global and lo-
cal helioseismic techniques to determine limits on the strength of
the magnetic field at the base of the convection zone (e.g., Chou
et al. 2003, and references therein). In this paper, we attempt to
improve helioseismic measurements of changes in this region.

Global modes of solar oscillation are described by three num-
bers that characterize the spherical harmonics that are used to
define the horizontal structure of the mode. These are (1) radial
order n that related to the number of nodes in the radial direction,
(2) the degree ‘ that is related to the horizontal wavelength of the
mode, and (3) the azimuthal order m that defines the number
of nodes along the equator. In a spherically symmetric star, the
2‘þ 1modes of an (n; ‘ ) multiplet are degenerate, but effects that
break spherical symmetry such as magnetic fields or rotation lift
the degeneracy and result in frequency splittings. The frequencies
"n‘m of themodeswithin amultiplet can be expressed as an expan-
sion in orthogonal polynomials:

"n‘m ¼ "n‘ þ
Xjmax

j¼1

aj(n; ‘)P (‘)
j (m): ð1Þ

Early investigators (e.g., Duvall et al. 1986) commonly used
Legendre polynomials, whereas nowone often uses the Ritzwoller-
Lavely formulation of the Clebsch-Gordan expansion (Ritzwoller
& Lavely 1991), where the basis functions are polynomials related
to the Clebsch-Gordan coefficients. In either case, the coeffi-
cients aj are referred to as a-coefficients or splitting coefficients.

Solar structure is determined by inverting the mean frequency "n‘,
while the odd-order coefficients a1; a3; : : : depend principally on
the rotation rate (Durney et al. 1988) and reflect the advective,
latitudinally symmetric part of the perturbations caused by rota-
tion. Hence, these are used to determine the rate of rotation in-
side the Sun. The even order a coefficients on the other hand result
from magnetic fields and asphericities in solar structure, and the
second-order effects of rotation (e.g., Gough & Thompson 1990;
Dziembowski & Goode 1991).

Solar oscillation frequencies are known to vary on timescales
related to the solar activity cycle. This was first suggested by
Woodard & Noyes (1985) and confirmed soon after by Elsworth
et al. (1990) and Libbrecht & Woodard (1990). It was quickly
established that the frequency shifts were strongly correlated with
surface activity (Woodard et al. 1991; Bachmann & Brown 1993;
Elsworth et al. 1994; Regulo et al. 1994, etc.). Libbrecht &
Woodard (1990) observed that the frequency shifts depended
very strongly on mode frequency ", and very weakly on degree
‘ of themode, andAngueraGubau et al. (1992) andElsworth et al.
(1994) confirmed these results. These authors concluded that all
or most of the physical changes responsible for the changes in
frequency were confined to the shallow layers of the Sun. In gen-
eral, this picture has been confirmed in more recent studies (e.g.,
observational results: Howe et al. 1999, 2002; Basu&Antia 2000;
Verner et al. 2004; Dziembowski & Goode 2005, etc., and theo-
retical results: Goldreich et al. 1991; Balmforth et al. 1996; Li
et al. 2003, etc.). A change in the second helium ionization zone
at r ¼ 0:98 R$, first suggested by Goldreich et al. (1991) and
Gough (2002) has been confirmed by Basu & Mandel (2004)
and Verner et al. (2006).

The even-order mode splitting parameters sample effects of
structural asphericities on themode frequency. Kuhn (1988) sug-
gested that they were correlated with observed changes in surface
temperature. Subsequentwork has shown that the aspherical com-
ponents of the mode frequencies are tightly correlated with sur-
face magnetic activity (Howe et al. 1999; Antia et al. 2001). This
high correlation lends further credence to the idea that frequency
shifts are caused by surface and/or near-surface effects. This can
be tested directly with high degree modes that sample the near-
surface layers of the Sun.However, as the degree ‘ increases, global
modes become increasingly hard tomeasure precisely due to the de-
crease in mode lifetimes (Rhodes et al. 1998; Rabello-Soares et al.
2001; Korzennik et al. 2004). The lack of reliable measurements
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Abstract. We consider the consequences of radiative heating for the storage of magnetic flux in the overshoot region at the
bottom of the solar convection zone. In the first part of the paper, we study the evolution of axisymmetric flux tubes (flux
rings), which are initially in neutrally buoyant mechanical equilibrium. Radiative heating leads to a slow upward drift of the
flux ring with a velocity depending on the degree of subadiabaticity of the stratification. Maintaining the flux tubes within the
overshoot region for time intervals comparable with the solar cycle period requires a strongly subadiabatic stratification with
� = r�rad < �10�4, which is not predicted by most current overshoot models (e.g., Skaley & Stix 1991; van Ballegooijen 1982;
Schmitt et al. 1984). The drag force exerted by equatorward flow due to meridional circulation permits states of mechanical and
thermal equilibrium in the overshoot region, but these apply only to very thin magnetic flux tubes containing less than 1% of the
flux of a large sunspot. In the second part, we consider the influence of radiative heating (and cooling) on magnetic flux stored
in the form of a magnetic layer. In contrast to the case of isolated flux tubes, the suppression of the convective energy transport
within the magnetic layer a↵ects the overall stratification of the overshoot region. In the case of a quenching of the convective
heat conductivity by a factor of the order 100, the overshoot layer receives a net cooling leading to a stronger subadiabaticity,
so that values of � < �10�4 are reached. The stabilization of the stratification relaxes the conditions for flux storage. Stronger
quenching of the heat conductivity leads to larger temperature perturbations (of both signs) and to the destabilization of the
upper part of the overshoot layer, with the likely consequence of rapid magnetic flux loss.

Key words. MHD – Sun: magnetic fields – Sun: interior

1. Introduction

Solar hydromagnetic dynamo models require that large
amounts of magnetic flux are retained in the convection zone
for times of the order of the cycle period (Parker 1975;
Galloway & Weiss 1981; Moreno-Insertis et al. 1992). Whereas
magnetic fields that do not considerably exceed the equiparti-
tion field strength with respect to the kinetic energy density
of the convective motions (<⇠1 T) may be transported down-
ward by convective pumping (Tobias et al. 2001), storage of
stronger magnetic field requires a mechanical equilibrium char-
acterized by neutral buoyancy and a force balance between
Coriolis force and magnetic curvature force (Moreno-Insertis
et al. 1992; Rempel et al. 2000; Schüssler & Rempel 2002).
Such strong magnetic field of the order of 10 T at the base
of solar convection zone has been inferred by various studies
of the stability and rise of magnetic flux tubes (e.g., Moreno-
Insertis 1986; Choudhuri & Gilman 1987; Moreno-Insertis
et al. 1992; Moreno-Insertis 1992; D’Silva & Choudhuri 1993;

? Present address: High Altitude Observatory, National Center for
Atmospheric Research, PO Box 3000, Boulder, Colorado 80307,
USA, e-mail: rempel@ucar.edu

Fan et al. 1993, 1994; Schüssler et al. 1994; Caligari et al. 1995,
1998; Fisher et al. 2000).

It should be mentioned that Dorch & Nordlund (2001)
come to a di↵erent conclusion than Tobias et al. (2001) con-
cerning the pumping of strong field. They found rescaling their
results to solar values that convective pumping still works for a
field strength of several Tesla.

The problem of flux storage has drawn new attention
through the work of Fan & Fisher (1996), who suggested that
the equilibrium of flux tubes is disturbed by radiative heating
arising from the non-vanishing divergence of the radiative heat
flux in the overshoot region and deep solar convection zone.
This process has been studied in detail by (Moreno-Insertis
et al. 2002) in the framework of a di↵usion model. Here we
consider the consequences of radiative heating for the storage
of magnetic flux in the overshoot region.

The paper is organized in two main parts: in Sect. 2 we dis-
cuss the influence of the radiative heating on isolated flux tubes
in the overshoot region. We present numerical results and give
an analytical discussion of possible equilibria. In Sect. 3 we
consider the influence of radiative heating on the equilibrium
of a magnetic layer as an alternative to field storage in the form
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Fig. 8. Radial dependence of quantities used in the numerical calculations for magnetic layers in the overshoot region. Top left: magnetic field
strength. Bottom left: ratio of radiative to total energy flux (↵ = Fr/F�). Top right: convective heat conductivity, c, from Eq. (47) for ✏ = 2
(solid curve) and ✏ = 4 (dashed curve). The dotted curve shows the undisturbed heat conductivity, 0c . Bottom right: radiative heating rate. The
cooling near the base of the overshoot region caused by the strong increase of ↵ reaches a peak value of about �250 W m�3, whereas the heating
within the overshoot region has a nearly constant value of 3 W m�3.

The parameter ↵̃ characterizes the vigor of the overshoot, d1 is
the width of the transition towards the radiation zone at the
base of the overshoot region, and d2 represents the length scale
of the decrease of ↵ in the overshoot region and convection
zone. The parameter c determines the magnitude of the con-
vective thermal conductivity. Figure 8 shows the profiles of
↵ and 0c for ↵̃ = 0.45, d1 = 100 km, d2 = 4 ⇥ 104 km,
c = 5 ⇥ 1015 W K�1 m�1 and r0 = 5 ⇥ 108 m, together with
the field strength in the magnetic layer as given by the function

B(r) =
1
4

B0

"

1 + tanh
 

r � rB1

dB1

!#

·

"

1 � tanh
 

r � rB2

dB2

!#

· (46)

The parameter values used in Fig. 8 are B0 = 10 T for the
maximum field strength, rB1 = 5 ⇥ 108 m, dB1 = 5 ⇥ 105 m,
rB2 = 5.1 ⇥ 108 m, and dB2 = 5 ⇥ 106 m. In analogy to quench-
ing approaches in turbulent dynamo theory (e.g., Tobias 1996),
we assume for the magnetic quenching of the convective heat
conductivity the relationship

c = qc0 =

"

1 +
 

B
Beq

!✏ #�1

c0, (47)

where Beq denotes the equipartition field strength with respect
to the kinetic energy density of the convective motions and the

parameter ✏ parameterizes the strength of the quenching. We
use values of B0 = 10 T and Beq = 1 T corresponding to the
expected conditions in the solar overshoot layer. Calculations
have been carried out for ✏ = 2 (suppression of c by a fac-
tor of 102) and ✏ = 4 (suppression by a factor of 104). With
0c ' 1015 W K�1 m�1 and r ' 1010 W K�1 m�1 (Spruit 1977a)
this means that the convective heat conductivity in the magnetic
layer has values of c ' 103 r and c ' 10 r, respectively. The
corresponding thermal di↵usion time scale

⌧di↵ =
d2 % cp

c
(48)

has values of 2 and 200 years, respectively, assuming a thick-
ness of the magnetic layer of d = 104 km.

The radiative heating rate given by the second term on the
right-hand side of Eq. (39) yields a nearly depth-independent
heating of approximately 3 Wm�3 within the overshoot region
and very strong cooling in the narrow boundary region to-
wards the radiation zone (see Fig. 8). The amplitude of the
cooling peak depends sensitively on the width of the bound-
ary region, but has no significant influence on the overall re-
sult since the volume-integrated cooling rate is fixed by the
jump of ↵. The result is determined mainly by the strength
of the magnetic quenching of the convective heat conductiv-
ity, which enters Eq. (39) mainly through the first (di↵usive)
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Fig. 9. Time evolution of the perturbations of temperature and superadiabaticity for a quenching of the convective heat conductivity by a
factor of 102 (✏ = 2, left) and 104 (✏ = 4, right), respectively. The curves correspond to t = 1 month (dotted), t = 6 months (solid), and
t = 5 years (dashed) elapsed time. Note that the disturbances in the latter case are by an order of magnitude larger. In the case ✏ = 2, the
temperature disturbance in the region r > 5 ⇥ 108 m approaches the asymptotic profile already after a few months. The significant decrease
of the superadiabaticity above r = 5 ⇥ 108 m shows that the change of the temperature profile stabilizes the stratification. In the case ✏ = 4,
the quenched convective heat conductivity is insu�cient to couple the regions with radiative heating and cooling, respectively, so that strong
perturbations arise. In this case, the upper part of the magnetic layer is heated and destabilized. Note that we only show the perturbation of the
superadiabaticity, �1. The background stratification has values of �0 in the range �10�6 . . .�10�5 in the overshoot region and about �0.2 in the
radiation zone.

term on the right-hand side, whereas the radiative heating term
is nearly independent of the magnetic field as long as (qf ⌧ 1).

In order to simulate the time evolution we solve Eq. (39)
using a finite-di↵erence scheme with semi-implicit treatment
of the di↵usion term. We calculate the perturbation of the su-
peradiabaticity in each time step by solving Eqs. (42) and (43).
The resulting evolution of the temperature and superadiabatic-
ity perturbations are shown in Fig. 9 for the cases ✏ = 2 and
✏ = 4, respectively. In the first case, the convective heat con-
ductivity is still large enough for e�cient heat exchange within
a few months between the regions with radiative heating and
cooling. The resulting temperature perturbation is negative in
the overshoot region, reaching a peak value of about �50 K.
This stabilizes the stratification by lowering the superadiabatic-
ity to values of a few times �10�4. The part of the solution
within the radiation zone corresponds to a traveling cooling
front, which does not reach a stationary state within the evo-
lution time considered here. We show in the section below that
the influence of this cooling front on the temperature profile in
the overshoot region is negligible.

The situation is di↵erent in the case ✏ = 4, correspond-
ing to a suppression of the convective heat conductivity by a

factor of 104. Such a strongly quenched heat conductivity can-
not prevent the development of strong temperature perturba-
tions, which initially follow the profile of the radiative heating:
the upper part of the magnetic layer is heated whereas the low-
ermost part is strongly cooled. As a consequence, the upper half
of the overshoot region is destabilized (� > 0), so that probably
the magnetic layer cannot be maintained there. The asymptotic
solution shows a profile similar to the case ✏ = 2, but it re-
quires roughly a (di↵usion) time of about 200 years to reach
this state. Thus this solution is irrelevant for magnetic fields
varying in the course of the 11-year solar cycle.

3.3. Analytical model

In the special case of a piecewise constant radial profile of
the total heat conductivity and a constant radiative heating rate
within the overshoot region, we obtain an analytical expres-
sion for the asymptotic solution of the di↵usion problem in the
overshoot region and also for the traveling cooling front in the
radiation zone. Since the thickness of the overshoot region is
small compared to the solar radius, geometrical factors follow-
ing from the spherical geometry are neglected. Furthermore,
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ABSTRACT

The average tilt angle of sunspot groups emerging throughout the solar cycle determines the net magnetic flux
crossing the equator, which is correlated with the strength of the subsequent cycle. I suggest that a deep-seated,
non-local process can account for the observed cycle-dependent changes in the average tilt angle. Motivated by
helioseismic observations indicating cycle-scale variations in the sound speed near the base of the convection zone,
I determined the effect of a thermally perturbed overshoot region on the stability of flux tubes and on the tilt angles
of emerging flux loops. I found that 5–20 K of cooling is sufficient for emerging flux loops to reproduce the
reported amplitude of cycle-averaged tilt angle variations, suggesting that it is a plausible effect responsible for the
nonlinearity of the solar activity cycle.

Key words: Sun: activity – Sun: interior – Sun: magnetic fields – sunspots

1. INTRODUCTION

One of the unsolved problems of the solar activity cycle is
the physical nature of the mechanism(s) underlying the
observed variations in cycle amplitude (Charbonneau 2010).
Among several possibilities, reduction of poloidal flux
generation by reducing the average tilt angle of bipolar
magnetic regions has recently been considered as a plausible
candidate. Analysis of tilt angle data from Mt. Wilson and
Kodaikanal observatories between solar cycles 15–21 by Dasi-
Espuig et al. (2010) has led to the discovery that the cycle-
averaged sunspot group tilt angle was inversely correlated with
the cycle strength. In terms of the Babcock–Leighton dynamo
process, this means that the surface source for the poloidal field
becomes weaker for stronger cycles, potentially limiting the
strength of the next cycle.

A possible explanation for the observed anti-correlation is
based on the effective reduction of the tilt angle by inflows
toward activity belts, which are observed by local helioseismic
techniques (González Hernández et al. 2008). Incorporation of
such inflows into surface flux transport models has shown the
efficiency of this mechanism in limiting the solar axial dipole
moment (Cameron et al. 2010; Jiang et al. 2010; Cameron &
Schüssler 2012).

As already discussed by Dasi-Espuig et al. (2010),
systematic changes in the tilt angle can also be led by changes
in the internal structure of the lower convection zone, a
potential location for the origin of magnetic flux loops which
produce sunspot groups. An observational hint came from
global helioseismology of low-degree oscillation modes by
Baldner & Basu (2008), who found a statistically significant
reduction in the acoustic wave speed near the base of the
convection zone between the minimum and maximum of cycle
23. A temperature perturbation mainly in the same direction
(cooling) was predicted by Rempel (2003), who considered a
magnetic layer near the base of the convection zone and
obtained time-dependent solutions for radial heat transport by
including radiative heating from below, in the presence of an
imposed horizontal magnetic field reaching 105 G.

In addition to radiative effects on stratification, stronger
cycles possibly involve more frequent flux tube explosions in
the midst of the convection zone (Moreno-Insertis et al. 1995;

Rempel & Schüssler 2001; Hotta et al. 2012). This can also
lead to a decrease in the radial entropy gradient, hence a
decrease in the (negative) superadiabaticity in the lower
convection zone.
In both the convection quenching and the entropy mixing

scenarios, the convection zone would be increasingly stabilized
for stronger magnetic fields. Consequently, the critical field
strength for the onset of flux tube instability would be raised
with the cycle strength. Flux tubes would then become unstable
at higher field strengths, emerge at the surface with smaller tilt
angles owing to stronger tension force.
Motivated by the helioseismic observations and the

theoretical arguments summarized above, I determine the
variation in the thermal perturbation required to account for the
observed changes in the cycle-averaged tilt angle. The results
indicate that a thermodynamic cycle in phase with the activity
cycle at the base of the convection zone can be responsible for
the nonlinear saturation of the solar dynamo.

2. THE MODEL

I use a one-dimensional stratification model of the solar
convection zone (Skaley & Stix 1991), which uses the non-
local mixing length formalism of Shaviv & Salpeter (1973).
This model allows for a weakly subadiabatic lower convection
zone below 0.775 Re, extending down to where the convective
heat flux changes sign at about 0.736 Re. The convective
overshoot region extends from this location down to 0.721 Re,
with a thickness of about 104 km.

2.1. Perturbations to the Stratification

To approximate the effect of radiative heating of a magnetic
layer in the overshoot region as estimated by Rempel (2003), I
model the change in the stratification simply as a decrease in
the temperature with an asymmetric piecewise Gaussian
perturbation of the form

T T
r r
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
σ+ = 4000 km for r� rp. Denoting the background thermo-
dynamic variables by index 0 and the perturbations by index 1,
I assume that the perturbations satisfy hydrostatic equilibrium,

dp
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For linear perturbations the ideal gas relation takes the form
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where H r p gp0 0 0( ) ≔ ( )S is the pressure scale height in the
unperturbed stratification. For simplicity, I assume that flux
tubes leading to sunspot groups have a sufficiently low filling
factor within a diffuse background field, so that the contribu-
tion of magnetic pressure to the hydrostatic equilibrium is
neglected against the other terms in Equation (4).

The perturbation in specific entropy, s1, can be determined
by writing energy conservation in the thermodynamic notation

s ds
T

du pd
1

, 51
1( ) ( )Sw � � �⎡⎣ ⎤⎦

where u is the internal energy. Writing du and dρ in terms of dT
and dp and expressing the differential quantities as perturba-
tions leads to
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where T pln ln 1sad 0 0
1≔ ( ) H� s s � � � is the adiabatic

temperature gradient.
The most critical quantity which determines the mechanical

stability of magnetic flux tubes in the overshoot region is the
superadiabaticity ,ad≔E � � � whose perturbation reads
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Using Equations (3), (6), and (7), the perturbation in the
superadiabaticity is found to be
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
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unperturbed stratification. For simplicity, I assume that flux
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
σ+ = 4000 km for r� rp. Denoting the background thermo-
dynamic variables by index 0 and the perturbations by index 1,
I assume that the perturbations satisfy hydrostatic equilibrium,
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where H r p gp0 0 0( ) ≔ ( )S is the pressure scale height in the
unperturbed stratification. For simplicity, I assume that flux
tubes leading to sunspot groups have a sufficiently low filling
factor within a diffuse background field, so that the contribu-
tion of magnetic pressure to the hydrostatic equilibrium is
neglected against the other terms in Equation (4).
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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where Tm is the amplitude of the perturbation, centered at
rp= 5× 1010 cm (0.718 Re), and σ± is the characteristic width
of the distribution, with σ−= 400 km for r< rp, and
σ+ = 4000 km for r� rp. Denoting the background thermo-
dynamic variables by index 0 and the perturbations by index 1,
I assume that the perturbations satisfy hydrostatic equilibrium,
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where H r p gp0 0 0( ) ≔ ( )S is the pressure scale height in the
unperturbed stratification. For simplicity, I assume that flux
tubes leading to sunspot groups have a sufficiently low filling
factor within a diffuse background field, so that the contribu-
tion of magnetic pressure to the hydrostatic equilibrium is
neglected against the other terms in Equation (4).

The perturbation in specific entropy, s1, can be determined
by writing energy conservation in the thermodynamic notation
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temperature gradient.
The most critical quantity which determines the mechanical
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2.2. Linear Stability of Magnetic Flux Tubes

To determine the effects of the modified stratification on
rising flux tubes, I first calculate the conditions for the linear
stability of flux tubes in the overshoot region, following the
procedure described by Ferriz-Mas & Schüssler (1995), in
which linear perturbations are applied on a toroidal flux ring in
mechanical equilibrium and in spherical geometry, using the
thin flux tube approximation. As a function of the radial
location, latitude, and field strength of the flux ring, the fastest-
growing azimuthal wave mode is obtained from the real parts

of the complex roots of the dispersion relation, in the unstable
regime, for a set of p, ρ, g, δ, Hp, and Ω, the angular rotation
speed. Differential rotation has been taken into account, also
for Section 2.3, using an internal rotation profile Ω(r, θ) (Işık
et al. 2011, Equation (23)) representing helioseismic inversions
(Schou et al. 1998).

2.3. Nonlinear Dynamics of Magnetic Flux Tubes

To simulate the nonlinear evolution of flux tubes, I use a
code developed by Moreno-Insertis (1986) and extended to 3D
spherical geometry in the Lagrangian frame by Caligari et al.
(1995). The code solves the fluid equations in ideal MHD,
taking into account the hydrodynamic drag force and assuming
isentropic evolution for the flux tube. The thermodynamic
quantities corresponding to the radial location of each mass
element of the tube are determined from the stratification model
described above, which has 3000 grid points over an adaptive
mesh, spanning from 0.56 Re to the surface. The flux tube itself
has periodic boundaries and 1000 mass elements.
Initially a flux ring is taken to be in mechanical equilibrium,

which is set by neutral buoyancy and a prograde azimuthal
flow, which balances the magnetic curvature force in the
rotating frame. Azimuthally periodic perturbations are applied,
in the form of a linear combination of modes with azimuthal
wavenumbers from m= 1 to m= 5, with amplitudes of the
order of 10−5Hp. For unstable, rising flux tubes, the
simulations stop when the top portion of the tube expands to
the extent that the thin flux tube approximation becomes
inapplicable, i.e., when the cross-sectional radius of the tube
exceeds 2Hp. This occurs at a height of about 0.98 Re. To
measure the tilt angles, the latitudinal and longitudinal
distances between the preceding and follower legs of emerging
flux loops are obtained at the same depth (0.97 Re).

3. RESULTS

3.1. Effects on Stratification

I now solve Equation (4) numerically, using a fourth-order
Runge–Kutta scheme, by taking the equilibrium quantities as
a function of radius from the stratification model, and the
corresponding perturbations from Equations (1)–(8). The radial
profile of the pressure perturbation is then obtained by setting
p1= 0 at r= 0.56 Re as the initial value. The radial profiles of
the perturbations T1, p1, ρ1, and δ1 are shown in Figure 1, for
T 50m � � K. Despite the simplifications made in Section 2.1,
the resulting profile of δ1 has a similar shape and amplitude to
the result of Rempel (2003).
The profile δ1 of Figure 1(d) is shown in more detail in

Figure 2, along with the unperturbed ∣ ∣E profile. The effect of
the thermal perturbation is such that the stratification is
destabilized within a narrow layer in the radiative zone, though
its relative effect on the highly subadiabatic environment is
insignificant (the yellow region). However, in the blue-shaded
region between about 0.72 Re and 0.74 Re, the stratification is
considerably stabilized, mainly in the overshoot region
(arrowed line).

3.2. Instability of Flux Tubes

How would the modified stratification affect the mechanical
stability of magnetic flux tubes in the convective overshoot
region? I first calculate the influence of the thermal perturbation
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(Section 2.1) on the linear instability map of thin toroidal flux
tubes subject to different strengths of thermal perturbation
within the layer.

I have set up stratification models corresponding to five
values for the amplitude of the temperature perturbation in
Equation (1): Tm= 0, −5, −10, −20, and −50 K (labeled T0,
T5, T10, T20, and T50). The stability diagrams resulting from
the linear stability analysis (Section 2.2) are presented in
Figure 3. As Tm∣ ∣ is increased, magnetic buoyancy instability
sets in at gradually higher field strengths, compared to the
unperturbed stratification. For T50 (not shown here), flux tubes
would have to be 3–5 times stronger to become unstable,
compared to the unperturbed case, T0.

3.3. Simulating Joy’s Law

To obtain the average values and latitude dependence of the
tilt angle, I have carried out a grid of simulations for all the
cases T0-T50, where the initial latitudes and field strengths of
the tubes are chosen with 5° intervals in latitude and for linear
growth times between 40 and 60 days, with 5-day intervals.

The initial location of the flux rings is taken at 0.728 Re,
corresponding to the middle of the overshoot region (same as
for Figure 3). The cross-sectional radius of the tube is set to
2000 km, which leads to a magnetic flux of 1.26× 1022 Mx for
a field strength of 105 G. The tilt angle as a function of the
emergence latitude (Joyʼs law) is plotted in Figure 4 for all
the cases. To fit the simulation data, I choose the following
functions, which are commonly used in observational studies:

a , 9( ) ( )B M M�

sin , 100( ) ( )B M H M�

T , 111 2( ) ( )B M M�

where λ is the emergence latitude and α is the tilt angle in
degrees, and a, γ0, and T are the fit coefficients corresponding
to each function. The functions have been fitted using the
nonlinear Levenberg–Marquardt algorithm. The form (9) was
used by Dasi-Espuig et al. (2010). The sinusoidal function
(Equation (10)) was used by Stenflo & Kosovichev (2012).
Their data set was based on bipolar magnetic regions from
magnetograms, which include plage regions alongside spots,
which is the possible reason for their systematically higher tilt
angles. The form (11) was used by Cameron et al. (2010) when
fitting cycle-dependent tilt angles of Dasi-Espuig et al. (2010),
to use in surface flux transport simulations.
Joyʼs law coefficients resulting from the simulations are

given in Table 1, which includes standard and latitude-
normalized averages of tilt angles, the fitted parameters for
different forms of Joyʼs law, and also the superadiabaticity at
the initial location of the flux tube. The mean tilt angle and
Joyʼs law coefficients are inversely proportional to the
amplitude of the thermal perturbation. As a result of the
stabilized environment, the tilt angles are systematically lower,
owing to increasing magnetic tension between the legs of
emerging flux loops. Changing the amplitude of cooling in the
middle of the overshoot region from 5 to 20 K roughly
accounts for the observed amplitude of cycle-averaged tilt
angles for solar cycles 15–21. The assumption behind this
conclusion is that the average depth from which sunspot region
producing flux tubes originate does not change significantly as
a function of cycle strength.
It should be noted that taking into account the radiative

heating of flux tubes has recently been shown to have a mild
effect on Joyʼs law (higher slopes), in the presence of turbulent
convective flow fields (Weber & Fan 2015). In future studies, it
would be of interest to include radiative diffusion in flux tube
simulations, in conjunction with a cycle-dependent thermal
perturbation.

4. COMPARISON WITH HELIOSEISMIC EVIDENCE

The magnitude of the change of sound speed at the base of the
convection zone found in the helioseismic analysis of Baldner &
Basu (2008) is about δc2/c2= (7.23± 2.08)× 10−5, expressed
as the difference in the squared sound speed between the solar
minimum and maximum, normalized to the minimum value.
Assuming that the reduction in wave speed is solely due to a
temperature drop, the corresponding cooling amplitude amounts
to about −150± 45K. Following the approach taken in Baldner
& Basu (2008) and assuming that the change in the sound speed
between cycle minimum and maximum is purely due to the
change in the local Alfvén speed, an estimate for the magnetic

Figure 1. Radial profiles of first-order perturbations in (a) temperature, (b) gas
pressure, (c) gas density, and (d) superadiabaticity, as a function of solar radius.

Figure 2. Radial profile the absolute superadiabaticity, .∣ ∣E The dashed curve
shows the unperturbed profile, ,0∣ ∣E with the transition between the subadiabatic
and superadiabatic regions marked by the long-dashed vertical line. The solid
black line shows the perturbation ,1∣ ∣E and the red curve shows .0 1∣ ∣E E� The
double arrow shows the extent of the overshoot region. In the yellow- and blue-
shaded regions the perturbation is positive and negative, respectively.
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KARARLILAŞAN FIRLATMA KATMANI
AKI TÜPÜ KARARLILIĞ INA ETK İS İ?

(Section 2.1) on the linear instability map of thin toroidal flux
tubes subject to different strengths of thermal perturbation
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I have set up stratification models corresponding to five
values for the amplitude of the temperature perturbation in
Equation (1): Tm= 0, −5, −10, −20, and −50 K (labeled T0,
T5, T10, T20, and T50). The stability diagrams resulting from
the linear stability analysis (Section 2.2) are presented in
Figure 3. As Tm∣ ∣ is increased, magnetic buoyancy instability
sets in at gradually higher field strengths, compared to the
unperturbed stratification. For T50 (not shown here), flux tubes
would have to be 3–5 times stronger to become unstable,
compared to the unperturbed case, T0.

3.3. Simulating Joy’s Law

To obtain the average values and latitude dependence of the
tilt angle, I have carried out a grid of simulations for all the
cases T0-T50, where the initial latitudes and field strengths of
the tubes are chosen with 5° intervals in latitude and for linear
growth times between 40 and 60 days, with 5-day intervals.

The initial location of the flux rings is taken at 0.728 Re,
corresponding to the middle of the overshoot region (same as
for Figure 3). The cross-sectional radius of the tube is set to
2000 km, which leads to a magnetic flux of 1.26× 1022 Mx for
a field strength of 105 G. The tilt angle as a function of the
emergence latitude (Joyʼs law) is plotted in Figure 4 for all
the cases. To fit the simulation data, I choose the following
functions, which are commonly used in observational studies:
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where λ is the emergence latitude and α is the tilt angle in
degrees, and a, γ0, and T are the fit coefficients corresponding
to each function. The functions have been fitted using the
nonlinear Levenberg–Marquardt algorithm. The form (9) was
used by Dasi-Espuig et al. (2010). The sinusoidal function
(Equation (10)) was used by Stenflo & Kosovichev (2012).
Their data set was based on bipolar magnetic regions from
magnetograms, which include plage regions alongside spots,
which is the possible reason for their systematically higher tilt
angles. The form (11) was used by Cameron et al. (2010) when
fitting cycle-dependent tilt angles of Dasi-Espuig et al. (2010),
to use in surface flux transport simulations.
Joyʼs law coefficients resulting from the simulations are

given in Table 1, which includes standard and latitude-
normalized averages of tilt angles, the fitted parameters for
different forms of Joyʼs law, and also the superadiabaticity at
the initial location of the flux tube. The mean tilt angle and
Joyʼs law coefficients are inversely proportional to the
amplitude of the thermal perturbation. As a result of the
stabilized environment, the tilt angles are systematically lower,
owing to increasing magnetic tension between the legs of
emerging flux loops. Changing the amplitude of cooling in the
middle of the overshoot region from 5 to 20 K roughly
accounts for the observed amplitude of cycle-averaged tilt
angles for solar cycles 15–21. The assumption behind this
conclusion is that the average depth from which sunspot region
producing flux tubes originate does not change significantly as
a function of cycle strength.
It should be noted that taking into account the radiative

heating of flux tubes has recently been shown to have a mild
effect on Joyʼs law (higher slopes), in the presence of turbulent
convective flow fields (Weber & Fan 2015). In future studies, it
would be of interest to include radiative diffusion in flux tube
simulations, in conjunction with a cycle-dependent thermal
perturbation.

4. COMPARISON WITH HELIOSEISMIC EVIDENCE

The magnitude of the change of sound speed at the base of the
convection zone found in the helioseismic analysis of Baldner &
Basu (2008) is about δc2/c2= (7.23± 2.08)× 10−5, expressed
as the difference in the squared sound speed between the solar
minimum and maximum, normalized to the minimum value.
Assuming that the reduction in wave speed is solely due to a
temperature drop, the corresponding cooling amplitude amounts
to about −150± 45K. Following the approach taken in Baldner
& Basu (2008) and assuming that the change in the sound speed
between cycle minimum and maximum is purely due to the
change in the local Alfvén speed, an estimate for the magnetic

Figure 1. Radial profiles of first-order perturbations in (a) temperature, (b) gas
pressure, (c) gas density, and (d) superadiabaticity, as a function of solar radius.

Figure 2. Radial profile the absolute superadiabaticity, .∣ ∣E The dashed curve
shows the unperturbed profile, ,0∣ ∣E with the transition between the subadiabatic
and superadiabatic regions marked by the long-dashed vertical line. The solid
black line shows the perturbation ,1∣ ∣E and the red curve shows .0 1∣ ∣E E� The
double arrow shows the extent of the overshoot region. In the yellow- and blue-
shaded regions the perturbation is positive and negative, respectively.
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DOĞRUSAL KARARLILIK ÇÖZÜMLEMESİ
GÜÇLÜ ÇEVR İMLERDE MANYET İK AKI TÜPLER İ DAHA KARARLI
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which is about 3.6× 105 G, using the sound speed perturbation
from the helioseismic result, and the local gas pressure from the
structure model used here. From another perspective, Rempel
(2003) found that when a magnetic field of 105 G quenches the
convective heat conductivity by a factor of 100, a local cooling

Figure 3. Instability maps of a thin flux tube as a function of latitude and field strength in the middle of the overshoot region, for T0 and T5 (upper panels); T10 and
T20 (lower panels). The contours show growth times from the linear stability analysis. The dots clustered along the densely packed contours (growth times 40–60
days with 5-day intervals) show the nonlinear simulations performed. The light (dark) shaded regions denote the wavenumber of the fastest-growing mode m = 1
(m = 2). It is noticeable that the instability threshold field strength shifts to larger values as the thermal perturbation is increased. Note that the range of field strength is
different on each plot.

Figure 4. Latitude dependence of the tilt angle (Joyʼs law) for simulations T0
to T50 with different amplitudes of local cooling. The tilt angles are averages
over 5° bins (continuous lines). The dotted lines show the sinusoidal fits
(Equation (10)). The average tilt angle and the steepness of the dependence
decrease with increasing temperature perturbation.

Table 1
Mean Tilt Angles and Joyʼs Law Parameters

Tm (K) δ (×10−5) B� § B M� § � § a γ0 T

0 −0.098 6.69 0.23 0.25 15.2 1.39
−5 −0.636 5.34 0.21 0.23 13.7 1.22
−10 −1.16 4.29 0.17 0.19 11.2 1.03
−20 −2.24 3.63 0.14 0.15 9.0 0.86
−50 −54.9 2.91 0.11 0.13 7.7 0.72
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JOY KURALI VE GÖZLENEN TERS İLİŞKİ
BABCOCK-LEIGHTON DÜZENEĞİN İN DOYUMA ULAŞMASI?
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Figure 4. Latitude dependence of the tilt angle (Joyʼs law) for simulations T0
to T50 with different amplitudes of local cooling. The tilt angles are averages
over 5° bins (continuous lines). The dotted lines show the sinusoidal fits
(Equation (10)). The average tilt angle and the steepness of the dependence
decrease with increasing temperature perturbation.
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M. Dasi-Espuig et al.: Sunspot tilt angles and strength of the solar cycle

3.2. Cycle parameter definitions

For the parameter study we focus on three main characteristics of
a solar cycle: strength, amplitude, and length. Strength is defined
as the total surface area covered by sunspots throughout a given
solar cycle. We calculate it from the daily sunspot area data set
compiled by Balmaceda et al. (2009) as the integral of sunspot
area over the duration of each cycle. This record is used since
it has significantly fewer data gaps than the MW and KK data
sets, as discussed in Sect. 2.2. The cycle amplitude is the high-
est value of monthly averaged sunspot number and the length is
the period of time between two consecutive minima. Times of
solar activity minimum, amplitudes, and the lengths of cycles
are taken from the National Geophysical Data Centre; http://
www.ngdc.noaa.gov/stp/SOLAR/getdata.html.

We looked for possible relationships of these parameters
with four different quantities based on the tilt angles: cycle mean
tilt angle, ⟨α⟩, cycle mean tilt angle normalised by the mean lat-
itude of sunspots during that cycle, ⟨α⟩/⟨λ⟩, cycle mean area-
weighted tilt angle, ⟨αω⟩, and the cycle mean area-weighted
tilt angle normalised by the mean latitude of sunspots dur-
ing the same cycle, ⟨αω⟩/⟨λ⟩. (For a brief discussion of how
these choices are influenced by the scatter in the tilt angles see
Appendix A). The area-weighted tilt angles are used to give
more importance to the bigger groups, which exhibit less scatter,
and the normalised tilt angles are considered in order to remove
the effect of the latitudinal dependence (Joy’s law) on the cycle-
averaged (area-weighted) tilt angles. Note that for the MW data
set, cycles 15 and 21 are not taken into account in the relation-
ships concerning ⟨α⟩ and ⟨αw⟩ due to their incompleteness and
could be thus biased by Joy’s law. This is not the case for the
quantities ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ since normalising by the mean
latitude removes this source of bias. Sunspots in stronger cy-
cles lie at higher latitudes (Solanki et al. 2008), so that simply
due to Joy’s law these cycles would have larger mean tilt angles.
Dividing by the mean latitude largely removes this difference
(both, Joy’s law and the dependence of mean latitude on cycle
strength are linear), so that ⟨α⟩/⟨λ⟩ and ⟨αω⟩/⟨λ⟩ indicate intrin-
sic changes of Joy’s law from cycle to cycle.

3.3. Relationships within the same cycle

We first investigate the possible relationship of the cycle aver-
aged sunspot tilt angles with the three solar cycle parameters of
the same cycle. These relations may help to shed light on the un-
derlying magnetic flux tubes at the base of the convection zone
and the processes that affect them on their way to the surface
(in the case of the strength and amplitude of the cycle) and on
the possibility that the tilt angles of active regions are involved,
along with other features (e.g. meridional flow), in the regula-
tion of the cycle period of the dynamo (in the case of length), or
conversely are influenced by it.

We calculated linear correlation coefficients between the
3 solar cycle global parameters and the 4 quantities based on
the tilt angles (see Sect. 3.2). Due to the low number of cycles,
we also determined the probability that the correlations are due
to chance (P). These are calculated from the probability density
function of the student’s t-distribution, which depends both on
the correlation coefficient and the number of points in the sam-
ple. All the values are listed in Table 2 for MW and KK data.
Table 2 suggests that both the strength and the amplitude of a
cycle show a significant negative correlation with the average
tilt of the same cycle, ⟨α⟩, for at least KK data. For MW data,
the probabilities that the correlations are due to chance, P, are

Fig. 4. Cycle averaged tilt angle normalised by the emergence latitude
vs. strength of the same cycle. The error bars represent 1σ errors and
the dashed line is a linear fit to the points. Panel a) displays the results
based on MW data (rc = −0.95) , where cycles 15 and 21 are shown as
squares and dashed lines for the error bars, and panel b) on the KK data
set (rc = −0.93).

about 30%, but for KK data (that includes both cycles 15 and
21), the corresponding probabilities are lower than 10%. These
correlations are significantly strengthened once we eliminate the
enhanced effect of Joy’s law on cycles with sunspots on average
at higher latitudes by considering ⟨α⟩/⟨λ⟩. The probabilities then
fall to values below 2% for both MW and KK data sets. For the
area-weighted tilt angles, the correlation coefficients are weaker.
Although these are also strengthened after the normalisation by
⟨λ⟩, reaching probability values below 3%, they remain slightly
higher than for ⟨α⟩/⟨λ⟩. The correlations between the length and
the 4 tilt angle based parameters are in general low, of low con-
fidence and inconsistent in sign between the two data sets.

Figure 4 shows ⟨αi⟩/⟨λi⟩ versus S i, where i is the cycle num-
ber. The dashed line represents a linear fit to the points and the
error bars correspond to 1σ errors calculated by means of er-
ror propagation, where the errors for the mean tilt angle and the
mean latitude correspond to their standard error. The error bars
have been calculated assuming Gaussian statistics and are thus
overestimated. In MW data (Fig. 4a) cycles 15 and 21 are repre-
sented by squares and dashed lines for the error bars to denote
their incompleteness. Note that all data points lie roughly within
1σ of the regression lines. This suggests that given the accuracy
of the measured tilt angles (given largely by the scatter shown by
active regions) the obtained correlation coefficients are near the
maximum value achievable for data with such large uncertainty.
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• Güneş çevrimlerini doyuma ulaştıran düzenek… 

• Eğiklik açısı çevrim ortalamalarında gözlenen değişimi açıklar…  

• Babcock-Leighton dinamo düzeneklerinde kullanılabilir… 

A nonlinear Babcock-Leighton dynamo with stochastic sources  
(Işık, Cameron, Schüssler 2016, ongoing work, based on Jiang et al. 2013)  

The Astrophysical Journal, 781:8 (15pp), 2014 January 20 Sanchez, Fournier, & Aubert

Figure 1. Illustration of the main processes at work in our solar dynamo model. The Ω-effect (left) depicts the transformation of a primary poloidal field into a
toroidal field by means of the differential rotation. The poloidal field regeneration is next accomplished either by the α-effect (top) and/or by the Babcock-Leighton
mechanism (bottom). In the α-effect case, the toroidal field at the base of the convection zone is subject to cyclonic turbulence. Secondary small-scale poloidal fields
are thereby created, and produce on average a new, large-scale, poloidal field. In the Babcock-Leighton mechanism, the primary process for poloidal field regeneration
is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
current one, which initiates a polarity reversal. The newly formed polar magnetic flux is transported by the meridional flow to the deeper layers of the convection zone,
thereby creating a new large-scale poloidal field.
(A color version of this figure is available in the online journal.)

of those equations governing the solar dynamo. Despite the
monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
of work has shown that axisymmetric mean-field solar dynamo
models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
locking of the solar cycle (Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000).

Such flux-transport models may make it possible to predict
the amplitude and duration of the upcoming solar cycles. The
first studies addressing this possibility (Dikpati et al. 2006;
Choudhuri et al. 2007) considered direct incorporation of data
into models, essentially by imposing (in a strong sense) surface
boundary values inherited from the data onto the model, whereas
an assimilation scheme would require this to happen in a weak
sense, through some flavor of the so-called best linear unbiased
estimator, whose goal is to combine in an optimal fashion the
data and the model, considering the uncertainties affecting both.
Independently of the data assimilation scheme one may resort
to, and as good as it may be, there exists an intrinsic limit to
its predictive power. Bushby & Tobias (2007) point out that this
limit arises either from the stochastic nature of the BL and
α-effects, or from nonlinear deterministic processes. They
stress, in addition, that the lack of constraints on the exact nature
of the key physical mechanisms which sustain these models and

govern their time-dependency, such as the α-effect, make their
ability to capture the essentials of the solar dynamo process
questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.

The same critic was made regarding weather prediction dur-
ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
dynamo is faithfully captured by mean-field models, one may
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rithm, and preferred that the user selects the group, relying on the
grouping of the original observer, which is a standard routine in
sunspot drawing observations. Identification of each group was
originally carried out by the standard morphological criteria, in
conjunction with magnetograms that the observer used to disen-
tangle the group from other groups in the vicinity. The obser-
vations have been scanned and archived in JPEG format of size
2k⇥1.5k.1.

We have developed an IDL program, which allows the user
to select sunspot groups interactively from the images and record
the Cartesian positions and raw areas (number of pixels) of indi-
vidual sunspots. The procedure is summarised below.

For each day of observation (image), the user selects and
records the positions of the intersection points of the solar disc
and the solar rotational axis projected on the celestial plane, P

and P

0 for the north and south poles (drawn by the observer), re-
spectively. These locations are required for conversion from the
Cartesian to heliocentric polar coordinates.

We have excluded groups labelled A and H from the mea-
surements, as they are "unipolar" regions in Zurich classifica-
tion, not useful for the tilt angle measurement. When the user
clicks on a spot, the code identifies the region of interest (ROI),
based on the condition that the pixels surrounding the clicked
point are above a certain threshold. In all the tests, we have found
that a maximum threshold of 100/255 (in byte scale) was conve-
nient in filling the umbra and excluding the penumbra, which
is always above the threshold. The image coordinates of each
spot has been determined by taking averages of all marked pix-
els in horizontal and vertical directions. The raw area Apix (in
pixel-squared) is recorded as number of pixels, which is then
corrected for foreshortening, using the heliocentric angle ⇢ (see
Appendix). The centre of the solar disc is determined as the mid-
point between P and P

0, from which the radius in pixels, Rpix is
also obtained. The spot area in the usual units of micro-solar
hemispheres (µSH) is calculated by

A =
Apix

10�62⇡R2
pix cos ⇢

. (1)

Next, we determine the heliocentric latitude and longitude of
each spot, using the image coordinates of the poles and the spot
considered. To this aim, we first measure the angle p1 between
PP

0 and the geographic meridian NS (see Appendix for details).
We compare this angle with the analytical value p0 for the time
of observation taken from SolarSoft

2, to determine the di↵erence
�p = p0�p1. When�p is above 1�, the program gives a warning,
and the user checks and reprocesses the corresponding images,
also checking whether the angle p was given correctly by the
observer. In any case, �p is used in correcting for the tilt of the
page scan, when determining the position angle ✓ of each spot.
This angle is measured from the geographical North in eastward
direction between 0 and 360�, obtained by, e.g., for the interval
0� < ✓ < 90� by

✓ = tan�1
✓
a

b

◆
+ �p, (2)

where a and b are, respectively, the horizontal and the vertical
Cartesian distances from the disc centre, and �p is taken as the
correction for the tilt of the image (the tilt of the central meridian
in the image frame). Having determined the position angle, the

1 http://www.koeri.boun.edu.tr/astronomy/years.asp
2 http://www.lmsal.com/solarsoft/

(a)

(b)

Fig. 1. (a) Butterfly diagram of sunspot groups measured. (b) Daily
sums of umbral sunspot group area (dots) and monthly averages (red
line).

heliocentric latitude � and longitude � of a given sunspot/pore is
calculated by

sin � = sin �0 cos ⇢ + cos �0 sin ⇢ cos(p0 � ✓) (3)
sin � = �0 + sin ⇢ sin(p0 � ✓)/ cos �, (4)

where �0 is the heliocentric latitude of the disc centre (the so-
called solar B-angle), and �0 is the Carrington longitude, and
both quantities are taken from SolarSoft.

To calculate the sunspot group tilt angle, we follow the same
procedure as in Howard et al. (1984), the only di↵erence being
that we do not employ an automated search for groups, instead
we adopt the group identification of the observer. First we deter-
mine the area-weighted average heliocentric coordinates of the
group centre. Every spot westward (eastward) from the central
longitude is assumed to belong to the preceding- (follower-) po-
larity region. The same weighing procedure is then applied to
p- and f-polarity spots separately in two clusters, leading to the
weighted centres of p- and f-polarity regions. This allows us to
calculate the tilt angle ↵ of the sunspot group using,

tan↵ =
��

�� cos �
g

, (5)

where �� is the latitudinal, �� is the longitudinal di↵erence be-
tween the p- and f-polarity centres, and �

g

is the group latitude.
By definition, the tilt angle is positive (negative) when the p-
polarity at a lower (higher) latitude than f-polarity. Because we
do not have information on magnetic polarities, this procedure
allows cannot distinguish anti-Hale configurations, which are re-
ported to be about 8 per cent of the all sunspot groups (McClin-
tock et al. 2014).

3. Results

The sunspot group latitude is plotted as a function of time in
Fig. 1a. There are considerable data gaps, throughout 1993 and
the last half of 2002, when the telescope was under maintenance.
The longest gap in 1993 is in the late phases of cycle 22 and
the half-year gap in 2002-2003 is not too long for our purpose,
which is to analyse tilt angles from a statistically su�cient data
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Fig. 4. (a) Variation of the tilt angle averaged over 300-day time inter-
vals (circles with error bars for the standard deviation of the mean. Two
significant data gaps are shown with vertical stripes. Variation of the
mean sunspot group area (rescaled) is shown in grey. (b) Same as (a),
for the tilt angle normalised to time-averaged group latitude.

Table 2. Hemispheric variation of the mean tilt angle

Cycle North (deg) South (deg)
22 6.25 ± 0.33 5.21 ± 0.32
23 6.83 ± 0.34 5.85 ± 0.31

viations, �̄ = �/
p

N. There is no significant dependence of the
average tilt angle on sunspot group area above 2�̄, confirming
Stenflo & Kosovichev (2012), who found no statistically signif-
icant dependence of the tilt angle amplitude on magnetic flux.
[CHECK THIS AGAIN!] However, we remark here the area de-
pendence of the tilt angle scatter, as noted by Jiang et al. (2014).
[CHECK THIS AGAIN!] The tilt angle distribution for all the
data is shown as a histogram in Fig. 5b, for which a Gaussian fit
gives the average tilt angle over all the data set to be 6.11�.

The distribution in Fig. 5a indicates that the tilt angle scat-
ter decreases with increasing area. To demonstrate the decrease
of scatter, we generate random numbers using a Gaussian dis-
tribution (centred at zero tilt angle) for each area bin and set the
number of realisations to the number of sunspot groups observed
for each area bin. The results are shown in Fig. 6a. When com-
pared to the observed distribution in Fig. 5a, we see that the scat-
ter amplitude exceeds the observed value with increasing group
area. However, when the width of the Gaussian for generating
random numbers is decreased at a constant rate with group area,
the resulting distribution mimics the observations more closely.

3.4. Hemispheric asymmetry

A systematic di↵erence in hemispheric averages of the tilt an-
gle can have important e↵ects on unequal rates of poloidal field
regeneration at each hemisphere. The averages are given in Ta-
ble ??.

Fig. 5. (a) Distribution of tilt angle as a function of umbral group area
for the entire data set. The averages over 30-µSH area bins are shown
with circles. The error bars denote the standard deviation of the mean.
The horizontal line shows the zero tilt angle and the dashed line shows
the area-weighted average tilt angle over all cycles in this study. (b)
Histogram of group tilt angles. The smooth curve is the Gaussian fit,
the vertical line shows the maximum of the Gaussian.

3.5. Cycle strength - tilt angle anti-correlation

4. Discussion

The prolonged minimum preceding Cycle 24 shows consider-
ably high tilt angles, consistent with the idea that the inflows
towards activity belts are proportional to the amount of active
region flux present at the photosphere (?, and the references
therein).

5. Conclusions
Acknowledgements. We would like to thank all sunspot observers of Kandilli
Observatory, who contributed to the archive of sunspot drawings since mid-20th
century, and also to C. Sagiroglu, N.A. Yilmaz, B.B. Kabasakal, A. Motlagh,
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Jiang et al.: Modeling Solar Cycles 15 to 21 Using a Flux Transport Dynamo

2. Flux transport dynamo model

The FTD model is based on the induction equation for an
azimuthally symmetric field:

∂A

∂t
= η(∇2 −

1

s2
)A−

1

s
(υ′ ·∇)(sA) + S, (1)

∂B

∂t
= η(∇2 −

1

s2
)B +

1

r

dη

dr

∂

∂r
(rB) (2)

−
1

r

[

∂

∂r
(rυ′

rB) +
∂

∂θ
(υ′

θB)

]

+ s(Bp ·∇)Ω,

where
B = B(r, θ)eφ +∇× [A(r, θ)eφ]. (3)

Here B(r, θ) is the toroidal component of the magnetic field
and A(r, θ) the toroidal component of the vector potential,
related to the poloidal component of the magnetic field by
Bp = ∇× (Aeφ); υ′ is the sum of the meridional velocity
field υ(r, θ) and magnetic pumping γ = γ(r)er; Ω(r, θ) is
the differential rotation profile; S(r, θ, t) is the source term
for the poloidal field; η(r) is the magnetic diffusivity; and
s = r sin θ.

The code used to solve the above problem was developed
at the MPS. It has been checked against the benchmark
dynamo of Jouve et al. (2008) and was previously used in
Cameron et al. (2012). In essence it treats the advective
term explicitly and an alternating direction implicit scheme
for the diffusive terms. We use 181×71 grid cells in the lat-
itudinal and radial directions, respectively, and a timestep
of one day.

2.1. Boundary conditions

We carry out our calculations in a spherical shell (0.65R⊙ ≤
r ≤ R⊙, 0 ≤ θ ≤ π). At the poles (θ = 0, π), we have

A = 0, B = 0. (4)

The inner boundary matches a perfect conductor,

A = 0,
∂(rB)

∂r
= 0 at r = 0.65R⊙. (5)

As described in Cameron et al. (2012), the appropriate
outer boundary is that the field is vertical there,

∂

∂r
(rA) = 0, B = 0 at r = R⊙. (6)

The vertical outer boundary condition is also proposed
by van Ballegooijen & Mackay (2007) and has previously
been used in the BL dynamo models by, for example,
Muñoz-Jaramillo et al. (2009) and Nandy et al. (2011).

2.2. Flow field and turbulent diffusivity

We use the same profile for the differential rotation as was
used in Cameron et al. (2012) and the references therein.
We also use the same form for the meridional flow as given
in that study, except that we have reduced the parameter
v0 that determines the speed of the meridional flow so that
the maximum speed at the surface is now 11 m/s instead
of 15 m/s to be consistent with CJSS10.

We also follow Cameron et al. (2012) for the turbulent
diffusivity profile

η(r) = ηrz +
ηcz − ηrz

2

[

1 + erf

(

r − rrz
d

)]

+
ηs − ηcz

2

[

1 + erf

(

r − rs
d

)]

, (7)

where the subscript rz is for the radiative zone, cz is for
the convection zone, and s is for the surface properties,
ηrz = 0.1 km2 s−1, ηcz = 10 km2 s−1, ηs = 250 km2s−1,
rcz = 0.7R⊙, rs = 0.95R⊙, and d = 0.02R⊙. The argument
for the choice of the surface diffusivity ηs is given in CJSS10
– it is near the middle of the range given by observations
(see Table 6.2 of Schrijver & Zwaan 2000). This value for ηs
is also consistent with the range found using comprehensive
photospheric simulations (Cameron et al. 2011). The tur-
bulent diffusivity in the convective zone ηcz is not directly
constrained. The effect of different values for this parameter
will be studied in Section 4.

In Cameron et al. (2012), constraints were placed on the
amount of magnetic pumping near the top of the convection
zone. However, the strength of the pumping in the deeper
layers is unconstrained. We assume here that the magnetic
pumping extends to the base of the convection zone, albeit
at a weaker level than in the near-surface layer. The radial
dependence of the pumping is assumed to be

γ(r) =
γcz
2

[

1 + erf

(

r − rγ
d

)]

+
γs − γcz

2

[

1 + erf

(

r − rns
d

)]

, (8)

where γcz = −2 m s−1, γs = −20 m s−1, rns = 0.9R⊙,
and rγ = 0.7R⊙. We assume here that the enhanced near
surface pumping extends slightly deeper than the region of
enhanced surface turbulent diffusivity (rns = 0.9R⊙ rather
than rs = 0.95R⊙), below which its strength drops to
2 m/s. Since the value of the pumping in the convection
zone and the depth at which pumping ceases (rγ) are un-
known, we study the impact of varying these parameters in
Section 4.

2.3. Source term

The source of poloidal field in this model is based on the
observed emergence of bipolar sunspot groups. We use the
procedure of CJSS10 to convert the RGO sunspot group
area observations into a change in the radial magnetic flux
at the surface: the RGO sunspot area record is used to ob-
tain sunspot group areas, longitudes, and latitudes. Tilt an-
gles from the Mount Wilson and Kodaikanal observatories
(Howard et al. 1984; Howard 1991; Sivaraman et al. 1993)
are averaged over each cycle as in Dasi-Espuig et al. (2010)
and CJSS10, and then used in conjunction with the RGO
data for individual spot groups to determine the longitudi-
nal and latitudinal separation between the two polarities in
the bipolar group. The areas are converted into fluxes using
the parameters in CJSS10 (also see the references therein).
For each sunspot group we calculate the corresponding
change in the radial field at the surface, ∆Br(R⊙, θ,φ, t).

The RGO data covers the period from 1874 to 1976.
The tilt angles are known from 1906 to 1987, and the over-
lapped data (cycles 14 to 20) can be used to reconstruct

3
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Fig. 2. Simulated variation of the magnetic field over cycle 19. The red and blue colors correspond to negative and
positive toroidal fields, respectively. The solid (dashed) lines represent anti-clockwise (clockwise) orientated field lines of
the poloidal field. The snapshots (A)-(F) cover cycle 19, corresponding to t = 1956, 1958, 1960, 1962, 1964, and 1966,
respectively.

Fig. 3. Radial component of the surface magnetic field for the reference case. The upper panel shows a time-latitude
diagram. The lower panel gives the polar fields, defined as the average radial field strength beyond ±70◦ latitude (black
curve) and the sunspot numbers (red curve). The vertical line indicates the time until which RGO sunspot group area
data are available. The correlation coefficient of the maxima of the polar fields and the subsequent maxima of sunspot
number for cycles 15 to 21 is 0.85.
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Fig. 4. Toroidal field at the base of the convection zone (r = 0.7R⊙). The upper panel shows the evolution as a function
of latitude and time. In the lower panel the average unsigned toroidal flux between ±45◦ latitude corresponding to odd
and even cycles is shown using dashed and solid curves, respectively. The correlation coefficient between the maxima of
the toroidal field at the base of the convection zone and the maxima of the observed sunspot number for cycles 15-21 is
0.93.

Fig. 5. Correlation coefficient between the maxima of the unsigned toroidal field corresponding to each cycle at the base
of convection zone (r = 0.7R⊙) and the observed maxima of the sunspot number for simulations with different values of
the pumping (left panel), and the turbulent diffusivity (right panel) in the convection zone. The asterisk represents the
actual numerical experiments which were performed. The square indicates the result for the reference case.
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• Gözlenen özellikler, modelde 
kullanıldı. 

• Yüksek korelasyonlar, B-L 
paradigmasını güçlendirdi.
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GÜNEŞ’İN GENÇ HALLERİNDE  
VE DİĞER SOĞUK YILDIZLARDA  

ETKİNLİĞİ ANLAMAK



DÖNME HIZININ ÖNEM İ

DÖNME - ETKİNLİK İLİŞKİSİ

• LX/Lbol    P -2 R -4 : daha iyi korelasyon! LX    P -2 ile eşdeğer!  
LX/Lbol    Ro=P/tconv
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Figure 4. Separate representations of X-ray activity vs. rotation period in
the unsaturated (lower part) and saturated (upper part) regimes. Activity is
represented in terms of LX in the unsaturated regime and in terms of LX/Lbol
in the saturated regime.
(A color version of this figure is available in the online journal.)

β = −2, and k = 1.86 × 10−3 d2 R4
⊙, saturation sets in at

about log kP −2R−4 = −3.14. With Lbol ∝ R4 and L⊙ =
3.853 × 1033 erg s−1, we find

Psat (days) = 1.6
(

Lbol

L⊙

)−1/2

=
(

Lbol

1.1 × 1034

)−1/2

, (10)

where Lbol is in units of erg s−1. This result is similar to
Equation (6) of Pizzolato et al. (2003).

For this value of the critical period, we show the distribution
of log LX versus P for the unsaturated regime together with
log(LX/Lbol) versus P for the saturated regime in the lower
and upper panels of Figure 4, respectively. For the unsaturated
regime, we find the relation

log LX = (30.71 ± 0.05) − (2.01 ± 0.05) log P, (11)

which is consistent with our optimal value β = −2.8

3.5. A Slope in the Saturated Regime

All three representations shown in Figures 3 and 4 indicate a
slight slope of the rotation–activity relationship in the saturated
regime, i.e., some remnant dependence of the activity on
rotation (or other parameters) even for very rapidly rotating
stars. Quantitatively, we find the following for the different
representations:

log
LX

Lbol
= (−3.37 ± 0.06) − (0.16 ± 0.03) log Ro,

log
LX

Lbol
= (−3.04 ± 0.02) − (0.07 ± 0.01) log (kP 2R4),

log
LX

Lbol
= (−3.12 ± 0.01) − (0.11 ± 0.03) log P.

There is a statistically significant slope in all three cases.
The slope is least significant (but still above 3σ ) in the
parameterization with P, while it is at ! 5σ and more in the other
two cases. The slope is likely due to a remaining dependence
of the dynamo on rotation period even when saturation is
reached, but it may also be influenced by small differences
in the saturation level between stars of different mass.
8 For the original sample, we find β = 1.97 ± 0.08.

Figure 5. Slope β for subsamples that contain stars out to a maximum distance.
Error bars show 1σ uncertainties.

3.6. Luminosity Bias

W11 pointed out that the slope of the rotation–activity relation
may suffer from a luminosity bias. A possible consequence
is that the least X-ray bright stars are systematically missed,
so that the average X-ray luminosity among the least active
stars (the slowest rotators) is overestimated. This would lead
to a slope that is shallower than the true relation. We lack a
statistically unbiased, complete sample of stars with X-ray and
rotation period measurements. Nevertheless, the large sample
of targets allows us to test whether the slope β that we derive
in the unsaturated regime depends on the distance to the stars
in the sample. A luminosity bias would be less pronounced in
a sample of nearby stars and would become more important if
we include increasingly distant objects. We carried out this test
by computing the slope β for stars in the sample with distances
out to 15, 30, 60, 120, 240, and 480 pc. The results are shown
in Figure 5. We find no significant trend of β as a function
of distance limit. There is a marginal trend towards higher
absolute values of the slope at large distances, but it is dominated
by the sample limited to 15 pc which has large uncertainties.
We conclude that our results do not show evidence of a
luminosity bias.

4. DISCUSSION

The result of our generalized analysis of the rotation–activity
relation can be summarized as follows. The total X-ray lumi-
nosity scales with the rotation period (P −2) as long as the stel-
lar activity is not saturated, and X-ray activity saturates for a
given star when LX/Lbol reaches a level of about 10−3. In the
unsaturated regime, this description is equivalent to a scaling
of LX/Lbol ∝ P −2R−4, which could be written as a Rossby
number scaling of the form LX/Lbol ∝ Ro−2 if the convective
overturn time scales as τ ∝ R−2 ∝ L

−1/2
bol . Furthermore, for a

given star in the saturated regime, LX/Lbol still shows a weak but
significant dependence on rotation. In what follows, we discuss
some physical implications of these results.

4.1. LX ∝ P −2

This relationship means that two stars with the same rotation
period emit the same X-ray luminosity, irrespective of their mass
or radius. Since observations indicate that LX is proportional to
Φs, the total magnetic flux at the stellar surface (Pevtsov et al.
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IŞ IK, SCHÜSSLER, SOLANKI (2007)

YILDIZ LEKELERİNİN ÖMÜRLERİ

• Yüzeysel akı taşınımı 

• Yalıtık çift kutuplu bölge 

• Gözlenen yüzey dif. dönmesi 

• Güneş boylamsal akışı ve difüzyonu  

• Ömürler      boyutlar, akışlar, yıldız yarıçapı
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Fig. 7. Evolution of a polar BMR with β = 4◦,∆β = 10◦, starting at λ0 =
70◦ on a star with a radius of 3.3 R⊙. The effects of weak differential
rotation (∆ω = 1.21 mrad day−1) and the same meridional flow profile
and magnetic diffusivity as in the solar case are considered. The large
stellar radius and the weak surface shear at high latitudes of the star
lead to a lifetime of about two years. Since the meridional flow ceases
at 75◦, the BMR is not completely drifted up to the rotational pole.

3 years on the subgiant star, compared to about 0.3 years on the
dwarf. Random emergence of six bipoles of fractional area 0.03
during 500 days (1.4 years) at λ0 = 60◦ prolongs the lifetime of
the polar spot to about 10 years (see the supplementary anima-
tion file subgiant.mpg).

4. Evolution of starspots

It is not known whether the observed starspots are monolithic
structures or conglomerates of smaller spots. In addition, the
only general information available regarding their evolution are
lifetime estimates, indicating values of less than one month at
mid-latitudes of rapid rotators (Hussain 2002). Here we com-
pare different possible configurations for starspots or starspot
groups of sizes comparable to those observed at mid-latitudes
of rapid rotators. Sunspots and their clusters with relatively long
lifetimes are unipolar features. Therefore, in contrast to the BMR
simulations presented above, we now consider starspots to be
unipolar regions, with the other polarity placed on the opposite
hemisphere, in order to conserve the total flux on the surface.
We also assume that the diffusion rate of a starspot is reduced
compared to the case of a BMR, which consists of spots, plages,
and ephemeral regions. The reason is that the strong and co-
herent magnetic fields in a starspot can suppress convection, as
in the case of sunspots. This effect is represented in our sim-
ulations by choosing a magnetic diffusivity that is much lower
than the value adopted for BMR evolution. The observed decay
rates of sunspots correspond to a diffusivity of 10−50 km2 s−1

(Martinez-Pillet et al. 1993). We adopt a value of η = 50 km2 s−1

for the starspot simulations. In the following, we describe simu-
lated scenarios in the presence and absence of large-scale flows
in order to discriminate between the effects; we consider mono-
lithic and cluster structures as well as two BMR-like models

Fig. 8. Evolution of magnetic flux of the area above the threshold field
strength of 0.14B0 normalised to the initial value (∼1022 Mx), for six
different flux configurations, all of which are started at λ0 = 50◦ (see
main text).

Fig. 9. Magnetic field evolution for a cluster of unipolar magnetic re-
gions, with η = 50 km2 s−1 (cases 3 and 4). a) The initial field dis-
tribution, b) the field distribution 30 days after the emergence, with-
out large-scale flows (case 2), c) the field distribution 30 days after the
emergence, with solar-like large-scale flows (case 3).

to compare their evolution. All configurations harbour the same
amount of total magnetic flux (1.52 × 1022 Mx). The cases are
described in Table 1.

The threshold field strength which determines the observ-
able flux is taken to be 0.14 times the initial peak field strength.
Figure 8 shows the evolution of magnetic flux at a field strength
above the threshold, normalised to its initial value. In case 1, the
flux decays nearly linearly in time, while for case 2 (the same
monolithic spot, but with large-scale flows) the decay is not lin-
ear in time, because the surface shear and the meridional flow
modify the length scale of the spot. For large-spot cluster cases,
with and without flows (cases 3 and 4), the initial decay is much
faster than in the other cases: the conglomerate structure con-
tains smaller flux elements, which diffuse faster than the group
as a whole. The situation is shown in Fig. 9: for case 3, once the
spots coalesce to a more diffuse patch, the effective length scale
becomes larger so that the decay rate is reduced and the subse-
quent evolution takes place largely with the same rate as for the
circular, monolithic region (case 1). When flows are introduced
(case 4), the cluster of large spots decays much faster owing to
the decrease of length scale by differential rotation. For cases 5
and 6, the evolutions are similar to each other, since they differ
only in magnetic diffusivity. In general, the effect of flows for
the cases 2 and 4−6 leads to shorter lifetimes and nonlinear flux
decay (for field strength above the threshold), whereas the lack
of flows leads to longer lifetimes and linear decay for the cases 1
and 3.

The linear decay of flux for the monolithic spot without flows
can be understood through a simple analytical model. Consider
the diffusion of a scalar field B, which is initially distributed
with axial symmetry on a plane. For simplicity we neglect
the curved surface on the sphere, which is appropriate as long
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For (sub)giant stars we find that BMRs emerging at high lat-
itudes can persist as polar spots for more than 2 years. This is
caused by the large radius of the star and the meridional flow
pattern, which is assumed to be decelerating with latitude for
37◦ < λ < 75◦. Furthermore, during the evolution of a polar cap,
emergence of new BMRs at high latitudes may inject fresh flux
of follower polarity and this can lead to a longer persistence of
the polar cap. This can possibly explain the observed polar spots
with very long lifetimes (cf. Hussain 2002).

In summary, we suggest that the observed long lifetimes
for polar spots in both dwarf and giant stars are likely to be
caused by

1. high-latitude emergence of BMRs, as indicated by the
numerical simulations of rising flux tubes (Schüssler
et al. 1996; Granzer et al. 2000);

2. supply of follower-polarity flux by transport from
mid-latitudes;

3. weak differential rotation near the poles, and its inefficiency
in disrupting polar magnetic regions;

4. the possibility of small turbulent magnetic diffusivity owing
to larger supergranules in subgiant atmospheres.

The possibility (2) has been considered by Schrijver &
Title (2001), whose simulations show the formation of a unipo-
lar ring of spots surrounding an opposite-polarity polar cap on
a highly active solar analogue. Process (1) was also studied in
the simulations by Mackay et al. (2004), resulting in the inter-
mingling of opposite polarity regions near the poles, owing to
emergence at high-latitudes and an assumed meridional flow am-
plitude about 10 times larger than the solar value.

It is not obvious how to describe starspots and spot clus-
ters in the framework of a linear surface flux transport model.
Extrapolations of spot areas to stars more active than the Sun
(Solanki & Unruh 2004) indicate that a large fraction of the ob-
served starspots are smaller than the resolution limits of Doppler
imaging maps and thus might be missed on existing reconstruc-
tions. These authors further suggest that, provided the spot ar-
eas are lognormally distributed, it is likely that the observed
spots on RS CVn stars are actually conglomerates of smaller
spots. Our simulations of starspots indicate that a large mono-
lithic spot (case 1 in Sect. 4) and a similar-sized cluster of large
spots (case 3) have similar lifetimes. Thus they do not favour ei-
ther of the two configurations. In the cases 1 and 3, the magnetic
flux of the region above the threshold field strength decreases
linearly with time. We have demonstrated that this is a natural
consequence of the two-dimensional diffusion of a scalar quan-
tity with a Gaussian initial profile, when a region above the de-
tection threshold of the quantity is considered.

We have treated the configuration and transport of a unipolar
spot/cluster in a number of other ways, all chosen such that the
total flux is kept the same. As a variant of case 3, we considered
the effects of solar-like differential rotation and meridional flow
on a cluster of large spots (case 4). The resulting lifetime turned
out to be strongly reduced in comparison to the case without
large-scale flows. In the initial phase, the individual spots expand
rapidly because of their relatively small sizes. After their coales-
cence, the general evolution pattern becomes similar to that of
the case 2, in which the evolution of a monolithic spot is stud-
ied in the presence of large-scale flows. Furthermore, we have
considered a region (case 5) with an area about 10 times larger
than a monolithic spot having the same magnetic flux. This is
a very simple representation of a cluster of small starspots on
a large area was implicitly assumed. This configuration has an
intermediate lifetime, between that of the large-spot cluster with

Fig. 10. Comparison of lifetime estimates of our simulations for differ-
ent areas with photometric results of Hall & Henry (1994).

flows (case 4) and of the one without flows (case 3). In summary,
the numerical simulations presented in Sect. 4 indicate that the
lifetime of a unipolar spot or spot cluster can differ by a factor
of about 2.5 depending on the assumed initial flux configuration
and the effects of large-scale flows.

Hall & Henry (1994) give lifetimes for starspots of various
angular sizes based on their photometric light curve analysis. We
compared their lifetime estimates with the results of our simu-
lations. We have selected the main sequence G-K type single
and binary stars (5 stars/systems in total) from their sample. In
Fig. 10 we give the comparison. Both sets of data are roughly
consistent with each other. Hall & Henry (1994) suggested two
“laws” for starspot lifetimes, based on long-term photometric
observations on a sample of active main sequence, subgiant, and
giant stars of spectral types G, K, M. For very large spots, they
assume that the lifetime is determined by shearing due to dif-
ferential rotation, such that the spot lifetime is assumed to be
inversely proportional to spot radius and differential rotation co-
efficient. In the second relation, the lifetime is proportional to
spot radius and stellar radius; it is thought to apply for relatively
small spots which have lifetimes shorter than the disruption time
scale of differential rotation. Since they do not give error bars for
spot sizes and lifetimes, we only take the data at the face value.
Their plots are logarithmic in both axes and the stellar sample
covers stars with very different radii and starspots probably at
different latitudes (the data does not include information on the
latitudes of the spots). Different stellar radii can cause a spread
in lifetimes to within an order of magnitude, considering the
R2
⋆-dependence mentioned in Sect. 3.3 and the weaker surface

shear. Sources of error in the area calculation based on bright-
ness changes can also include the fact that there is not only one
big starspot but a cluster of spots with different sizes and life-
times. Moreover, another spot might emerge within the lifetime
of the other, which would cause errors in both the area and the
lifetime. As a result, one cannot necessarily assume an individ-
ual coherent structure that is having such a lifetime. According
to the test models made by Eker (1999), a photometric signal
with an amplitude of about 0.15 mag, for light curves which are
accurate by ±0.005 mag in brightness and by ±0.005 in the lin-
ear limb-darkening coefficient, the uncertainty of the spot size is
comparable to the size itself.

We suggest that if the observed wave-like distortion in light
curves can be caused by large spot conglomerates, differential
rotation can disperse the group of relatively small spots over
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Fig. 7. Evolution of a polar BMR with β = 4◦,∆β = 10◦, starting at λ0 =
70◦ on a star with a radius of 3.3 R⊙. The effects of weak differential
rotation (∆ω = 1.21 mrad day−1) and the same meridional flow profile
and magnetic diffusivity as in the solar case are considered. The large
stellar radius and the weak surface shear at high latitudes of the star
lead to a lifetime of about two years. Since the meridional flow ceases
at 75◦, the BMR is not completely drifted up to the rotational pole.

3 years on the subgiant star, compared to about 0.3 years on the
dwarf. Random emergence of six bipoles of fractional area 0.03
during 500 days (1.4 years) at λ0 = 60◦ prolongs the lifetime of
the polar spot to about 10 years (see the supplementary anima-
tion file subgiant.mpg).

4. Evolution of starspots

It is not known whether the observed starspots are monolithic
structures or conglomerates of smaller spots. In addition, the
only general information available regarding their evolution are
lifetime estimates, indicating values of less than one month at
mid-latitudes of rapid rotators (Hussain 2002). Here we com-
pare different possible configurations for starspots or starspot
groups of sizes comparable to those observed at mid-latitudes
of rapid rotators. Sunspots and their clusters with relatively long
lifetimes are unipolar features. Therefore, in contrast to the BMR
simulations presented above, we now consider starspots to be
unipolar regions, with the other polarity placed on the opposite
hemisphere, in order to conserve the total flux on the surface.
We also assume that the diffusion rate of a starspot is reduced
compared to the case of a BMR, which consists of spots, plages,
and ephemeral regions. The reason is that the strong and co-
herent magnetic fields in a starspot can suppress convection, as
in the case of sunspots. This effect is represented in our sim-
ulations by choosing a magnetic diffusivity that is much lower
than the value adopted for BMR evolution. The observed decay
rates of sunspots correspond to a diffusivity of 10−50 km2 s−1

(Martinez-Pillet et al. 1993). We adopt a value of η = 50 km2 s−1

for the starspot simulations. In the following, we describe simu-
lated scenarios in the presence and absence of large-scale flows
in order to discriminate between the effects; we consider mono-
lithic and cluster structures as well as two BMR-like models

Fig. 8. Evolution of magnetic flux of the area above the threshold field
strength of 0.14B0 normalised to the initial value (∼1022 Mx), for six
different flux configurations, all of which are started at λ0 = 50◦ (see
main text).

Fig. 9. Magnetic field evolution for a cluster of unipolar magnetic re-
gions, with η = 50 km2 s−1 (cases 3 and 4). a) The initial field dis-
tribution, b) the field distribution 30 days after the emergence, with-
out large-scale flows (case 2), c) the field distribution 30 days after the
emergence, with solar-like large-scale flows (case 3).

to compare their evolution. All configurations harbour the same
amount of total magnetic flux (1.52 × 1022 Mx). The cases are
described in Table 1.

The threshold field strength which determines the observ-
able flux is taken to be 0.14 times the initial peak field strength.
Figure 8 shows the evolution of magnetic flux at a field strength
above the threshold, normalised to its initial value. In case 1, the
flux decays nearly linearly in time, while for case 2 (the same
monolithic spot, but with large-scale flows) the decay is not lin-
ear in time, because the surface shear and the meridional flow
modify the length scale of the spot. For large-spot cluster cases,
with and without flows (cases 3 and 4), the initial decay is much
faster than in the other cases: the conglomerate structure con-
tains smaller flux elements, which diffuse faster than the group
as a whole. The situation is shown in Fig. 9: for case 3, once the
spots coalesce to a more diffuse patch, the effective length scale
becomes larger so that the decay rate is reduced and the subse-
quent evolution takes place largely with the same rate as for the
circular, monolithic region (case 1). When flows are introduced
(case 4), the cluster of large spots decays much faster owing to
the decrease of length scale by differential rotation. For cases 5
and 6, the evolutions are similar to each other, since they differ
only in magnetic diffusivity. In general, the effect of flows for
the cases 2 and 4−6 leads to shorter lifetimes and nonlinear flux
decay (for field strength above the threshold), whereas the lack
of flows leads to longer lifetimes and linear decay for the cases 1
and 3.

The linear decay of flux for the monolithic spot without flows
can be understood through a simple analytical model. Consider
the diffusion of a scalar field B, which is initially distributed
with axial symmetry on a plane. For simplicity we neglect
the curved surface on the sphere, which is appropriate as long
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TABANDAKİ SÜREÇLERİ YÜZEYE BAĞLAMAK
IŞ IK VD. 2011 (G-K YILDIZLARI)

Next steps 

!  Surface flux transport (photosphere) – Baumann et al. (2004) 
                                                                               – Işık, Solanki, Schüssler (2007) A&A 464, 1047 

!  Emergence latitudes & tilt angles 

!  Flux tube instability & rise (through CZ) – Işık & Holzwarth (2009) 

!  Emergence probability � B(dynamo) 
!  [# of emergence events] � Ω★ 

 

!  Thin-layer αΩ dynamo (base of CZ) – Schmitt et al. (1989) 

!  α � Ω★ – assumption for faster rotation 
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DÖNME HIZINI ARTIRMANIN SONUÇLARI

GÜNEŞ BENZERİ YILDIZLAR

Güçlenen kutup alanları

Kutup alanları zayıflıyor    

{
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Işık vd. (2011)

Savaşan etkiler:  
Ekvatoru geçen akı  

X eğiklik X çevrim örtüşmesi



ORTA HIZDA DÖNEN YILDIZ

• Akı tüpleri: Yükselişin sapması zayıf 

• Kutup alanları ≈ alçak enlemli 
alanlar (ve karşıt evrede) 

• “Flat activity”?
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HALL & LOCKWOOD (2004)

10 (/57) G YILDIZI DÜZ VE ETKİN DURUMDA



Etkinlik çevrimleri - K0V yıldızı, Prot=2
d

minimum maksimum iniş
Dönme ile parlaklık değişimi çevrim evresine bağlı…


Büyük eğiklik açıları => belirgin etkinlik kuşakları 


Pcyc ≈ 2.75 yıl -- genlik değişimi yok

Işık vd. 2011



Yüksek enlemlerde 
yüzeye çıkış


Dinamo dalgaları ve 
emergence pattern 
separated

K1IV (alt dev) yıldız 
kütle, yarıçap, konvektif katmanlaşma, dif. dönme oranı ≈ HR 1099!"#$%&'%()*+,(-+.#(&'(/($/0&1*2($3-/-&'%(4+.%&/'- Yüzeye çıkış
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K1IV yıldızında çevrim(ler)

Yüzey taşınımı 
kutuplarda zayıf


Rastgele 
bileşenin etkileri  
≈ periyodik 
dinamo sinyalinin 
genliği

min max

Işık vd. 2011



Gözlem ~ Model 
Dinamik kuvvet tayfları: K. Olah
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DÖNME DÖNEM İ: 2 GÜN

STOKASTİK KAYNAKLI B-L MODELİ

• Varsayım: ∆Ω     Ω 

• Yüzeye çıkış özellikleri:        tüp 
benzetimleri 

• Dinamo periyodu: ~ 5 yıl 

• Yarı düzenli, çift periyotlu 
değişimler 

• Güçlü kuzey-güney asimetrisi 

• Parite değişimleri 

• (süren çalışma)

/



İLERİYE BAKIŞ

1. 2B akı taşınım dinamosu + doğrusal olmayan ve stokastik etkiler == Güneş 
çevriminin istatistik özellikleri ve diğer yıldızlar arasında hangi durumda old. 

2. Dinamo zaman ölçeklerinde iç yapı değişimlerini modellemek <—> helyosismoloji 

3. (1)’i orta düzeyde etkin Güneş benzeri yıldızlar için bir sayısal deney düzeneği 
olarak kullanmak 

4. (1)’i yıldızlarda yüzeysel akı taşınımı modellerinde kullanmak 

• Dönme ve çevrim zaman ölçeklerinde yıldız parlaklık değişimlerini modellemek 

• Zeeman-Doppler görüntüleme tekniğini denetlemek; taç ve rüzgar modellemesi 

5. Hızlı dönen etkin yıldızlarda lekelerin gözlenen enlemsel dağılımı 

6. Dönme - etkinlik bağlılığı için fiziksel açıklama

AÇIK PROBLEMLER



TEŞEKKÜRLER

• TÜBİTAK 1001: 113F070 ve 114F372 no.lu projeler 

• Bilim Akademisi — BAGEP 2016 astrofizik ödülü


