

X Persei'nin Zamanlama Analizi ve Geçici QPO Özelliğinin Keşfi

Z. Acuner, S. Ç. İnam, **Ş. Şahiner*,** M. M. Serim, A. Baykal, J. Swank

(2014, MNRAS 444, 457 - 465)

UAK 2015, Ankara

X Persei

- Sürekli ışınım yapan, düşük parlaklıklı aktarım güçlü atarca
- Be tipi eş-yıldızı çevresinde geniş ve neredeyse dairesel bir yörüngede
- Optik ve kızılötesindeki değişkenlikler, X-ışını ışık eğrisine genelde yansımıyor.
- Parlak dönemlerde H_{α} ve diğer Balmer serisi emisyon çizgileri kuvvetli

Sistemdeki atarcanın puls profili

Optik bileşenin bazı özellikleri			(Lyubimkov et al.1997)
Tayf tipi			B0 Ve
Efektif sıcaklık		${T_{ m eff}}$	31000 K
Kütlesi		<i>M</i> _c	13 – 20 <i>M</i> _☉
Yarıçapı		R _c	5 – 10 R _o
Ekvatoral hızın izdüşümü		v sin <i>i</i>	~200 km s ^{−1}
Uzaklık	(Telting et al. 1998)	d	~ 0.95 kpc

Atarcanın bazı özellikleri		(Delgado-Marti et al. 2001)
Yörünge periyodu	P _{orb}	~ 250.3 d
Puls periyodu	$P_{\sf spin}$	~ <mark>837.6 s</mark>
Eksantrisite	е	0.11
Yarı-büyük eksenin izdüşümü	a _x sin <i>i</i>	454 lt-s
Periastron(Enberi) boylamı	ω	288°
X-ışını parlaklığı	L _x	~10 ³⁴ -10 ³⁵ erg s ⁻¹
Manyetik Alan (Coburn et al. 2001)	B _s	2.5x10 ¹² G

X Persei

- 2000 2006 yılları arası, optik bileşen çevresindeki disk büyürken, artan kütle aktarımı nedeniyle X-ışını akısı da artmıştır. (Grundstrom et al. 2007)
- Bu aktivite 2011 e kadar devam etmiştir.
- İki parlama arasındaki süre, hesaplanan disk büyüme süreleri ile tutarlıdır.

(Clark et al. 2001)

 Bu çalışmada 1998 – 2010 yılları arası RXTE ve INTEGRAL gözlemleri kullanılarak kaynağın zamanlama analizi yapılmıştır.

(Lutovinov et al. 2012)

RXTE – PCA

- 1 Temmuz 1998 17 Şubat 2003
- 148 gözlem ~ 800 ks
- "Good_Xenon" verileri ile 3-20 keV
 0.1 s gruplanmış ışık eğrisi

INTEGRAL – IBIS/ISGRI

- 5 Mart 2004 12 Eylül 2010
- 766 gözlem ~ 2 Ms
- "II_LIGHT" kodu ile 20-40 keV
 10 s gruplanmış ışık eğrisi

Puls zamanlama analizi

- Periyot geçmişinin güncellenmesi
- Frekans değişim oranları
- Gürültü gücü analizi

Güç tayfı analizi

- Kuasi-Periyodik Osilasyon (QPO)
- Uzun dönemli ortalama güç tayfı

RXTE: Zamanlama Analizi

- Puls profilleri Fourier harmonikler ile temsil edilir.
- Çapraz korelasyon analizi

(Deeter & Boynton 1985)

• Puls geliş zamanları 5. derece polinom ile modellenmiştir.

$$\delta\phi = \delta\phi_o + \delta\nu(t - t_o) + \sum_{n=2}^{5} \frac{1}{n!} \frac{d^n \phi}{dt^n} (t - t_o)^n$$

Parameter	Value	
Epoch (t ₀) (d, in MJD)	50995.038(1)	
Timing parameters at to:		
Spin period (s)	837.666(6)	
Spin frequency (Hz)	1.19379(9) × 10 ⁻³	
$\dot{\nu}$ (Hz s ⁻¹)	$-5.5(3) \times 10^{-15}$	
$\ddot{\nu}$ (Hz s ⁻²)	$6.6(6) \times 10^{-23}$	
$\ddot{\nu}$ (Hz s ⁻³)	$-3.6(9) \times 10^{-30}$	
τ̈ν (Hz s ⁻⁴)	$9(2) \times 10^{-38}$	

INTEGRAL: Periyot Ölçümleri

- Daha önce Lutovinov et al. (2012) tarafından farklı bir teknikle analiz edilmişti.
- Işık eğrisindeki uzun boşluklar faza bağlamaya olanak vermiyor.
- 6 data seti bağımsız olarak analiz edildi.
- ~ 7–10 günlük parçalardan oluşturulan puls profilleri ile çapraz korelasyon analizi
- Puls geliş zamanları doğrusal modellenerek

 $\delta \phi = \delta v (t - t_o)$

Puls periyotları düzeltildi.

- Lutovinov et al. (2012) *INTEGRAL* verilerini, alternatif bir imaj rekonstrüksiyon metodu ile işlemiştir. (*Krivonos et al. 2010*)
- Bu sebeple onların ISGRI ışık eğrisi $\simeq 3.7$ Ms
- Ölçtükleri; Maks. spin-up hızı *P*/P ≃ −5×10⁻⁴ yr⁻¹ (MJD 53000 öncesi)
 Ort. spin-up hızı ise *P*/P ≃ −3.6×10⁻⁴ yr⁻¹
- spin-up / spin-down hızlarındaki değişim , X-ışını parlaklığı ile ilişkili !!

X-ışın akısı vs. Frekans türevi:

- ~ 200 günlük RXTE parçalarından frekans türevi ve X-ışın akısı ölçümleri
- Maks. Spin-up hızı *P*/P ≃ −2.6×10⁻⁴ yr⁻¹
- Rüzgar yolu ile madde aktarımı yapan nötron yıldızları için; frekans türevi kütle aktarım hızının bir fonksiyonudur.
 (Shakura et al. 2012)

Kritik bir değerin üzerindeki aktarım hızları için, frekans değişim hızı X-ışını akısı ile korelasyon gösterir.

Gürültü Gücü Analizi

Güç yoğunluğu değerlendirmesi: Deeter polinom metodu

(Deeter 1984)

- Gürültü gücü: 10⁻²⁰ 10⁻²³ Hz s⁻²
- Yüksek kütleli X-ışını Çiftlerinde en düşük değer
- 1/35 yr⁻¹ ile 1/1yr⁻¹ arası eğim 0.85
- Dik güç yasası indisi → frekans türevinde kırmızı gürültü
- → Sistemde geçici kütle aktarım diski oluşumu

QPO'nun Keşfi

Geçmişte raporlanan QPO ~ 0.05 Hz (Takeshima 1998) 😫

RXTE ışık eğrilerinin güç tayfı analizi:

- I. Çift güç yasası (power law) sürekliliği
- II. $\sim 0.01 0.08$ Hz arası geniş, Gauss tipi gürültü
- III. ~ 0.2 Hz frekansında dar , Lorentz tipi fazlalık
- QPO frekansı 0.195 Hz (5 σ üzerinde)
- ✓ Yanlış sinyal olasılığı 1 × 10⁻⁸
- ✓ Kalite Faktörü Q = 10.8
- ✓ RMS büyüklüğü % 4.8

• Kepler frekansı modeline göre;

(van der Klis et al. 1987)

$$\nu_k = \frac{1}{2\pi} \left(\frac{GM}{r_0^3}\right)^{1/2}$$

 \rightarrow İç disk yarıçapı (r_0) \sim 5 × 10⁸ cm

 $r_0 \sim 0.52 \mu^{4/7} (2GM)^{-1/7} \dot{M}^{-2/7}$ $\mu = B \times R^3$ $L \simeq GM \dot{M}/R$

(Ghosh & Lamb 1979)

 \rightarrow Kütle aktarım hızı $\sim 2.4 \times 10^{14}$ g s⁻¹

→ Yüzey manyetik alanı $\sim 3.6 \times 10^{11}$ G

Uzun dönemli ortalama güç tayfı

Sönük (2.4×10³⁴ erg s⁻¹)ve Parlak (7×10³⁴ erg s⁻¹) dönem için iki tayf (her biri ~ 400 d)

- Çift kırılmalı güç yasası modeli ile tutarlı (Revnivtsev et al. 2009)
 → Madde akışı iki farklı aktarım bileşeni tarafından sağlanıyor
- Kırılma frekansları kaynağın X-ışını parlaklığından etkilenmiyor.
 → Kütle aktarım hızındaki değişimler, belirgin bir geometri değişimine sebep olmuyor.

- Frekans türevi ile X-ışını akısı ilişkisi;
 - → "Küresel-Benzeri Aktarım Teorisi"ne göre Rüzgar yolu ile madde aktarımı
- Gürültü gücü analizine göre; → frekans türevinde kırmızı gürültü
 - → frekans türevinde kırmızı gürültü
 → Sistemde geçici kütle aktarım diski oluşumu
- QPO görülmesi nedeniyle Disk oluşum senaryosu kuvvetlenmiştir.
- Ortalama güç tayfı analizine göre;
 Madde akışı iki farklı aktarım bileşeni tarafından sağlanıyor

Rüzgar + Disk