Differential astroseismic study of seismic twins observed by CoRoT

Nesibe OZEL

19th National Astronomy Conference
METU, Ankara

February 02th 2015
Introduction

✓ Asteroseismology

✓ Seismic scaling relations
Asteroseismology

✓ description: study of stellar pulsations
✓ how does it work?

Theoretical model → Theoretical oscillations → Star observed → Observed oscillations
Stars in spherical symmetry

✓ Form of the solutions: \(\Psi(r, \theta, \varphi) = \Psi_n(r) \ Y_{\ell}^m(\theta, \varphi) \)

Quantum numbers

✓ \(n = \) radial order
✓ \(\ell = \) degree (\(\ell \geq 0 \))
✓ \(m = \) azimuthal order (\(|m| \leq \ell\))
Different types of modes

Aqoustiques modes (p modes)
- ✓ the restoring force = the pressure
- ✓ frequencies are high and increases with $|n|$
- ✓ modes are concentrated at the surface

Gravity modes (g modes)
- ✓ the restoring force = the buoyancy (force of Archimède)
- ✓ frequencies are low and decreases with $|n|$
- ✓ modes are located in the interior of the stars
Diagnostic Potentials

Solar Frequency Spectrum, as observed by VIRGO on SOHO satellite

Seismic indicators:

- **Large separation**: \(\Delta_{n,\ell} = \nu_{n,\ell} - \nu_{n-1,\ell} \approx \left(2 \int_0^R \frac{dr}{c_s} \right)^{-1} \propto \left(\frac{M}{R^3}\right)^{1/2} \)
- **Small separation**: \(\delta_{n,\ell} = \nu_{n,\ell} - \nu_{n-1,\ell+2} \approx -(4\ell + 6) \frac{\Delta_{n,\ell}}{4\pi^2 \nu_{n,\ell}} \int_0^R \frac{dc_s}{dr} \frac{dr}{r} \)

un indicator of the age
Seismic indicators give global information about stars oscillations.

\[\nu_{\text{max}} : \text{Frequency of the maximum height in the power spectrum} \]

\[\Delta \nu : \text{Large separation} \]

\[\nu_c : \text{Cut-off frequency} \]
Scaling Relation

A seismic scaling relation:

A relation that relates global seismic indices to fundamental stellar parameters.
A seismic scaling relation:

A relation that relates global seismic indices to fundamental stellar parameters.

Mass, Radius, Effective temperature,...
Ulrich (1986) showed that large separation scales as the mean density in the context of solar-like pulsators.

\[\Delta \nu \propto \rho^{1/2} \propto \left(\frac{M}{R^3} \right) \]
Ulrich (1986) showed that large separation scales as the mean density in the context of solar-like pulsators

\[\Delta \nu \propto \rho^{1/2} \propto \left(\frac{M}{R^3} \right) \]

Brown (1991) first proposed a linear relation between \(\nu_{\text{max}} \) and \(\nu_c \)

\[\nu_{\text{max}} \propto \nu_c \propto \frac{c_s}{2H_p} \propto \frac{g}{\sqrt{T_{\text{eff}}}} \propto \frac{M}{R^2 \sqrt{T_{\text{eff}}}} \]
✓ This has been extended by Kjeldsen & Bedding (1995) ⇒ To predict mode amplitudes, frequency ranges, in solar-like stars

✓ Validated by Bedding & Kjeldsen (2003) using ground-based observations

(Bedding & Kjeldsen, 2003)
From $\Delta\nu$ and ν_{max} to stellar masses and radii

- large separation versus mean density $\Delta\nu \propto <\rho>^{1/2} \propto (\frac{M}{R^3})^{1/2}$
- frequency of the maximum height versus cut-off frequency
 \[\nu_{\text{max}} \propto \nu_{\text{c}} \propto \frac{c_s}{2H_p} \propto \frac{g}{\sqrt{T_{\text{eff}}}} \propto \frac{M}{R^2 \sqrt{T_{\text{eff}}}} \]

For a given effective temperature one can deduce an estimation of mass and radius.

\[
\frac{R}{R_{\text{ref}}} = \left(\frac{\nu_{\text{max}}}{\nu_{\text{max,ref}}} \right) \left(\frac{\Delta\nu}{\Delta\nu_{\text{ref}}} \right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff,ref}}} \right)^{1/2},
\]

\[
\frac{M}{M_{\text{ref}}} = \left(\frac{\nu_{\text{max}}}{\nu_{\text{max,ref}}} \right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\text{ref}}} \right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff,ref}}} \right)^{3/2}
\]

R and M (log g) are often named seismic mass and radius (seismic gravity)
Plan

1. Introduction
 - Asteroseismology
 - Seismic scaling relations

2. Differential analysis method
 - STEP I : Finding a reference model
 - STEP II : Performing a differential analysis

3. Application to two CoRoT solar-like stars
 - Seismic Modelling of HD 181420
 - Differential Analysis for of HD 175272

4. Results
 - Results

5. Conclusion
Differential seismology of twins

Space-based Observation: CoRoT...

Barban et al. (2009)

HD 181420

Space-based Observation: CoRoT...

(Ozel et al. 2013)

HD 175272
Schematic diagram : STEP I

New method: Find the best stellar model of the reference stars with a high SNR.

\[
\chi^2_{\text{min}} = \sum_{i}^{N} \left(\frac{y_{i,\text{obs}} - y_{i,\text{calc}}(x)}{\sigma_i} \right)^2
\]

- **Observations:** (seismic (ΔV, V_{\max}, etc.) and classical (T_{eff}, L, etc.) constraints)
- **Stellar structure**: CESAM (Morel, 1997, A&A)
- **EOS**, **GPAI**, **MLT**
- **Given physics**
- **Best model of the star**
- **Change of parameters**
Schematic diagram : STEP II

New method : Perform the differential analysis to characterise an another star with a lower SNR.

\[
\frac{\delta y_{\text{obs}}}{y_{\text{obs}}} = \frac{\delta x}{x} + o(\delta x^2), \\
\frac{\delta x}{x} = J^{-1} \frac{\partial y_{\text{obs}}}{y_{\text{obs}}} + o(\delta x^2),
\]

where \(J \) is the Jacobian \(\frac{\partial y_{\text{obs}}}{\partial x} \), \(\delta y_{\text{obs}}/y_{\text{obs}} \) are the relative differences in observational constraints and \(\delta x/x \) are those in parameters between two stars.
From HD 181420 with a high SNR to the less well-known star HD 175272

Table: Observations of HD 181420 and HD 175272 are determined by Barban et al. (2009), Mosser & Appourchaux (2009), respectively.

<table>
<thead>
<tr>
<th></th>
<th>HD 175272</th>
<th>HD 181420</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \nu$ (μHz)</td>
<td>74.9 ± 0.4</td>
<td>75.2 ± 0.4</td>
</tr>
<tr>
<td>ν_{max} (μHz)</td>
<td>1600 ± 20</td>
<td>1590 ± 10</td>
</tr>
<tr>
<td>T_{eff} (K)</td>
<td>6675 ± 120</td>
<td>6580 ± 100</td>
</tr>
<tr>
<td>[Fe/H]</td>
<td>+0.08 ± 0.11</td>
<td>−0.05 ± 0.06</td>
</tr>
<tr>
<td>L/L_\odot</td>
<td>6.3 ± 1</td>
<td>4.28 ± 0.28</td>
</tr>
</tbody>
</table>
STEP I : Seismic Modelling of HD 181420

Adopted the scaling relation:

\[
\frac{\nu_{\text{max}}}{\nu_{\text{max} \odot}} = \frac{g}{g_{\odot}} \left(\frac{T_{\text{eff}}}{T_{\text{eff} \odot}} \right)^{-1/2}.
\]

\(\text{(1)} \)

Table: Three different cases for modeling HD 181420

<table>
<thead>
<tr>
<th>Case</th>
<th>Obs. Constraints</th>
<th>Model Parameters</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(\Delta \nu), (\nu_{\text{max}})</td>
<td>1.50, 1000</td>
<td>1.62, 6.26</td>
</tr>
<tr>
<td>II</td>
<td>(\Delta \nu), (\nu_{\text{max}}), (T_{\text{eff}})</td>
<td>1.58, 1470, 0.20</td>
<td>1.69, 5.24</td>
</tr>
<tr>
<td>III</td>
<td>(\Delta \nu), (\nu_{\text{max}}), (T_{\text{eff}}), (L/L_{\odot})</td>
<td>1.53, 1460, 0.19</td>
<td>1.05, 1.66, 4.44</td>
</tr>
</tbody>
</table>

Nesibe OZEL
Differential Asteroseismology
STEP I : Seismic Modelling of HD 181420

Table: Model parameters and the theoretical values of the observational constraints are obtained using the Levenberg-Marquardt algorithm that searches the best-fit parameters by χ^2 minimisation.

<table>
<thead>
<tr>
<th></th>
<th>solar mixture GN93</th>
<th>solar mixture AGS05</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>1.30 ± 0.17</td>
<td>1.28 ± 0.17</td>
</tr>
<tr>
<td>t_1 (Myr)</td>
<td>2127 ± 175</td>
<td>2325 ± 267</td>
</tr>
<tr>
<td>$(Y_0)_1$</td>
<td>0.30 ± 0.09</td>
<td>0.29 ± 0.09</td>
</tr>
<tr>
<td>R/R_\odot</td>
<td>1.61 ± 0.10</td>
<td>1.60 ± 0.10</td>
</tr>
<tr>
<td>$\Delta \nu_{\text{theo}}$ (µHz)</td>
<td>75.2</td>
<td>75.2</td>
</tr>
<tr>
<td>$T_{\text{eff, theo}}$ (K)</td>
<td>6542</td>
<td>6574</td>
</tr>
<tr>
<td>L/L_\odot_{theo}</td>
<td>4.28</td>
<td>4.29</td>
</tr>
</tbody>
</table>
STEP II : Differential Analysis for of HD 175272

A first order Taylor development around the reference star gives, after some manipulation, the following linear system of equations:

\[
\frac{\nu_{\text{max}}}{\nu_{\text{max,ref}}} = \frac{g}{g_{\text{ref}}} \left(\frac{T_{\text{eff}}}{T_{\text{eff,ref}}} \right)^{-1/2}
\]

\[\frac{\text{d} \nu_{\text{max}}}{\nu_{\text{max}}} \left(\begin{array}{c}
\frac{7}{2} \frac{\text{d} T_{\text{eff}}}{T_{\text{eff}}} + \frac{\partial \ln L}{\partial \ln Z/X_0} \frac{\text{d} Z/X_0}{Z/X_0} \\
\frac{\partial \ln T_{\text{eff}}}{\partial \ln Z/X_0} \frac{\text{d} Z/X_0}{Z/X_0} & \frac{\partial \ln \Delta \nu}{\partial \ln Z/X_0} \frac{\text{d} Z/X_0}{Z/X_0}
\end{array} \right) = \left(\begin{array}{c}
\frac{\partial \ln L}{\partial \ln M} \frac{\text{d} M}{M} - \frac{\partial \ln L}{\partial \ln t} \frac{\text{d} t}{t} - \frac{\partial \ln L}{\partial \ln Y_0} \frac{\text{d} Y_0}{Y_0}
\end{array} \right),
\]

\[\frac{\text{d} T_{\text{eff}}}{T_{\text{eff}}} = \frac{\partial \ln T_{\text{eff}}}{\partial \ln Z/X_0} \frac{\text{d} Z/X_0}{Z/X_0} + \frac{\partial \ln T_{\text{eff}}}{\partial \ln t} \frac{\text{d} t}{t} + \frac{\partial \ln T_{\text{eff}}}{\partial \ln Y_0} \frac{\text{d} Y_0}{Y_0},
\]

\[\frac{\text{d} \Delta \nu}{\Delta \nu} = \frac{\partial \ln \Delta \nu}{\partial \ln Z/X_0} \frac{\text{d} Z/X_0}{Z/X_0} + \frac{\partial \ln \Delta \nu}{\partial \ln t} \frac{\text{d} t}{t} + \frac{\partial \ln \Delta \nu}{\partial \ln Y_0} \frac{\text{d} Y_0}{Y_0},
\]

where \(\frac{\text{d} M}{M}, \frac{\text{d} t}{t}, \frac{\text{d} Y_0}{Y_0} \) are the unknowns and \(\frac{\text{d} \nu_{\text{max}}}{\nu_{\text{max}}}, \frac{\text{d} \Delta \nu}{\Delta \nu}, \frac{\text{d} T_{\text{eff}}}{T_{\text{eff}}}, \frac{\text{d} Z/X_0}{Z/X_0} \) are the seismic and non-seismic differential constraints.
Results

Table: Relative differences between the two stars, from Eqs. (3)-(5)

<table>
<thead>
<tr>
<th>solar mixture</th>
<th>GN93</th>
<th>AGS05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Differences of Observational Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d\Delta \nu/\Delta \nu \pm \sigma_{\Delta \nu}$</td>
<td>-0.004 ± 0.007</td>
<td></td>
</tr>
<tr>
<td>$dT_{\text{eff}}/T_{\text{eff}} \pm \sigma_{T_{\text{eff}}}$</td>
<td>0.014 ± 0.023</td>
<td></td>
</tr>
<tr>
<td>$d\nu_{\text{max}}/\nu_{\text{max}} \pm \sigma_{\nu_{\text{max}}}$</td>
<td>0.006 ± 0.014</td>
<td></td>
</tr>
<tr>
<td>Relative Differences of Stellar Model Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$dM/M \pm \sigma_M$</td>
<td>0.06 ± 0.06</td>
<td>0.04 ± 0.05</td>
</tr>
<tr>
<td>$dt/t \pm \sigma_t$</td>
<td>-0.33 ± 0.26</td>
<td>-0.24 ± 0.27</td>
</tr>
<tr>
<td>$dY_0/Y_0 \pm \sigma_{Y_0}$</td>
<td>0.03 ± 0.12</td>
<td>0.07 ± 0.17</td>
</tr>
<tr>
<td>$dR/R \pm \sigma_R$</td>
<td>0.02 ± 0.02</td>
<td>0.01 ± 0.02</td>
</tr>
</tbody>
</table>
Results

Table: Parameters of HD 175272 obtained by adding the results of the differential analysis with those obtained for HD 181420 for a full computation of adiabatic frequencies.

<table>
<thead>
<tr>
<th>solar mixture</th>
<th>GN93</th>
<th>AGS05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters of Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>1.38±0.20</td>
<td>1.33±0.36</td>
</tr>
<tr>
<td>t_2(Myr)</td>
<td>1521±271</td>
<td>1829±245</td>
</tr>
<tr>
<td>$(Y_0)_2$</td>
<td>0.31±0.09</td>
<td>0.31±0.16</td>
</tr>
<tr>
<td>Properties of Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_2/R_\odot</td>
<td>1.64</td>
<td>1.65</td>
</tr>
<tr>
<td>$\Delta \nu$</td>
<td>75.01</td>
<td>72.80</td>
</tr>
<tr>
<td>ν_{max}</td>
<td>1455</td>
<td>1393</td>
</tr>
<tr>
<td>T_{eff}</td>
<td>6655</td>
<td>6645</td>
</tr>
<tr>
<td>L_2/L_\odot</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>log g_2</td>
<td>4.15</td>
<td>4.13</td>
</tr>
</tbody>
</table>
The differential analysis method is based on scaling relations, and benefit from the comparison to a star with similar characteristics.

The scientific output of many astroseismic objects with a low SNR benefit from the precise modeling of nearby reference stars with a high SNR.

It can be applied to stars with interesting properties, such as stars hosting an exoplanet or members of a double system.

Perspectives

- Apply the same type of analysis to other types of CoRoT and Kepler’s stars with a low SNR, from red giants to solar-like stars.
- Characterize the well-constrained stars: a very precise determination of the structural differences between nearby stars.
THANKS FOR ATTENTION!