Differential astroseismic study of seismic twins observed by CoRoT

Nesibe OZEL

19th National Astronomy Conference METU, Ankara

February 02th2015

Introduction

√ Asteroseismology

√ Seismic scaling relations

Asteroseismology

- √ description : study of stellar pulsations
- √ how does it work?

Stars in spherical symmetry

 \checkmark Form of the solutions : $\Psi(r,\theta,\varphi) = \underbrace{\Psi_n(r)}_{} \underbrace{Y_\ell^m(\theta,\varphi)}_{}$ radial spherical harmonics part

Quantum numbers

Introduction

- \sqrt{n} = radial order
- $\checkmark \ell = \text{degre } (\ell \geq 0)$
- $\checkmark m = \text{azimutal order } (|m| \le \ell)$

Aqoustiques modes (p modes)

- \checkmark the restoring force = the pressure
- \checkmark frequencies are high and increases with |n|
- √ modes are concentrated at the surface

Gravity modes (g modes)

- \checkmark the restoring force = the buoyancy (force of Archimède)
- \checkmark frequencies are low and decreases with |n|
- √ modes are located in the interior of the stars

Diagnostic Potentials

Solar Frequency Spectrum, as observed by VIRGO on SOHO satellite

Seismic indicators:

- ✓ Large separation : $\Delta_{n,\ell} = \nu_{n,\ell} \nu_{n-1,\ell} \simeq \left(2 \int_0^R \frac{dr}{c_s}\right)^{-1} \propto (M/R^3)^{1/2}$
- ✓ Small separation : $\delta_{n,\ell} = \nu_{n,\ell} \nu_{n-1,\ell+2} \simeq -(4\ell+6) \frac{\Delta_{n,\ell}}{4\pi^2 \nu_{n,\ell}} \int_0^R \frac{dc_S}{dr} \frac{dr}{r}$ un indicator of the age

Seismic indicators give global information about stars oscillations.

Chaplin et al. (2010)

 $\sqrt{\nu_{\rm max}}$: Frequency of the maximum height in the power spectrum

 $\checkmark \Delta_{\nu}$: Large separation

 $\nu_{\rm c}$: Cut-off frequency

Scaling Relation

A seismic scaling relation:

A relation that relates global seismic indeces to fundamental stellar parameters.

Scaling Relation

A seismic scaling relation :

A relation that relates global seismic indices to fundamental stellar parameters.

Mass, Radius, Effective temperature,...

✓ Ulrich (1986) showed that large seperation scales as the mean density in the context of solar-like pulsators.

$$\Delta
u \propto
ho^{1/2} \propto \left(rac{M}{R^3}
ight)$$

✓ Ulrich (1986) showed that large seperation scales as the mean density in the context of solar-like pulsators

$$\Delta
u \propto
ho^{1/2} \propto \left(rac{M}{R^3}
ight)$$

 \checkmark Brown (1991) first proposed a linear relation between $\nu_{\rm max}$ and ν_{c}

$$u_{
m max} \propto
u_{
m c} \propto rac{c_{
m s}}{2H_{
m p}} \propto rac{g}{\sqrt(T_{
m eff})} \propto rac{M}{R^2\sqrt(T_{
m eff})}$$

 \checkmark This has been extended by Kjeldsen & Bedding (1995) ⇒ To predict mode amplitudes, frequency ranges, in solar-like stars

✓ Validated by Bedding & Kjeldsen (2003) using ground-based observations

(Bedding & Kjeldsen, 2003)

- \checkmark large seperation versus mean density $\Delta \nu \propto <\rho>^{1/2} \propto \left(\frac{M}{R^3}\right)^{1/2}$
- \checkmark frequency of the maximum height versus cut-off frequecy $\nu_{\rm max} \propto \nu_{\rm c} \propto \frac{c_{\rm s}}{2H_{\rm p}} \propto \frac{g}{\sqrt{I_{\rm ceff}}} \propto \frac{M}{R^2\sqrt{I_{\rm ceff}}}$

For a given effective temperature one can deduce an estimation of mass and radius.

$$R \propto \nu_{\rm max} \Delta \nu^{-2} T_{\rm eff}^{1/2} \quad \Rightarrow \frac{R}{R_{\rm ref}} = \left(\frac{\nu_{\rm max}}{\nu_{\rm max,ref}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\rm ref}}\right)^{-2} \left(\frac{T_{\rm eff}}{T_{\rm eff,ref}}\right)^{1/2},$$

$$M \propto \nu_{\rm max}^3 \Delta \nu^{-4} T_{\rm eff}^{4/2} \quad \Rightarrow \frac{M}{M_{\rm ref}} = \left(\frac{\nu_{\rm max}}{\nu_{\rm max,ref}}\right)^3 \left(\frac{\Delta \nu}{\Delta \nu_{\rm ref}}\right)^{-4} \left(\frac{T_{\rm eff}}{T_{\rm eff,ref}}\right)^{3/2}$$

R and M (log g) are often named seismic mass and radius (seismic gravity)

Plan

- Introduction
 - Asteroseismology
 - Seismic scaling relations
- Differential analysis method
 - STEP I : Finding a reference model
 - STEP II : Performing a differential analysis
- 3 Application to two CoRoT solar-like stars
 - Seismic Modelling of HD 181420
 - Differential Analysis for of HD 175272
- Results
 - Results
- Conclusion

Differential seismology of twins

Schematic diagram: STEP I

New method: Find the best stellar model of the reference stars with a high SNR.

Schematic diagram: STEP II

New method: Perform the differential analysis to characterise an another star with a lower SNR.

where J is the Jacobien (∂Inyi/∂Inx), δyobs/yobs are the relative differences in observational constraints and δx/x are those in parameters between two stars.

HD 181420 and HD 175272

From HD 181420 with a high SNR to the less well-known star HD 175272

Table: Observations of HD 181420 and HD 175272 are determined by Barban et al. (2009), Mosser & Appourchaux (2009), respectively.

	HD 175272	HD 181420
$\Delta \nu \; (\mu Hz)$	74.9 ± 0.4	75.2 ± 0.4
$ u_{ m max} \ (\mu { m Hz})$	1600 ± 20	$1590 {\pm} 10$
$T_{ m eff}$ (K)	6675 ± 120	$6580 {\pm} 100$
[Fe/H]	$+0.08\pm0.11$	-0.05 ± 0.06
L/L_{\odot}	6.3 ± 1	4.28 ± 0.28

STEP I: Seismic Modelling of HD 181420

Adopted the scaling relation :

$$\frac{\nu_{\text{max}}}{\nu_{\text{max}\odot}} = \frac{g}{g_{\odot}} \left(\frac{T_{\text{eff}}}{T_{\text{eff}\odot}} \right)^{-1/2}.$$
 (1)

Table: Three different cases for modeling HD 181420

Case	Obs. Constraints	Model Parameters		Outputs			
		$M(M_{\odot})$	t(Myr)	Y_0	α	R/R_{\odot}	L/L_{\odot}
	Δu , $ u_{ m max}$	1.50	1000			1.62	6.26
Ш	Δu , $ u_{ m max}$, $ u_{ m eff}$	1.58	1470	0.20		1.69	5.24
Ш	Δu , $ u_{ m max}$, $ u_{ m eff}$, $ u/L_{\odot}$	1.53	1460	0.19	1.05	1.66	4.44

STEP I : Seismic Modelling of HD 181420

Table: Model parameters and the theoretical values of the observational constraints are obtained using the Levenberg-Marquardt algorithm that searches the best-fit parameters by χ^2 minimisation.

	solar mixture GN93	solar mixture AGS05
M_1	1.30 ± 0.17	1.28 ± 0.17
$t_1(Myr)$	2127 ± 175	2325 ± 267
$(Y_0)_1$	0.30 ± 0.09	0.29 ± 0.09
R/R_{\odot}	$1.61 \pm\ 0.10$	1.60 ± 0.10
$\Delta u_{ m theo}(\mu { m Hz})$	75.2	75.2
$\mathcal{T}_{ ext{eff}_{ ext{theo}}}(K)$	6542	6574
$L/L_{\odot_{\mathrm{theo}}}$	4.28	4.29

STEP II: Differential Analysis for of HD 175272

A first order Taylor development around the reference star gives, after some manipulation, the following linear system of equations :

$$\frac{\nu_{\text{max}}}{\nu_{\text{max,ref}}} = \frac{g}{g_{\text{ref}}} \left(\frac{T_{\text{eff}}}{T_{\text{eff,ref}}}\right)^{-1/2} \tag{2}$$

$$\frac{\mathrm{d}\nu_{\mathrm{max}}}{\nu_{\mathrm{max}}} - \frac{7}{2} \frac{\mathrm{d}T_{\mathrm{eff}}}{T_{\mathrm{eff}}} + \frac{\partial \ln L}{\partial \ln Z/X_0} \frac{\mathrm{d}Z/X_0}{Z/X_0} = \left(1 - \frac{\partial \ln L}{\partial \ln M}\right) \frac{\mathrm{d}M}{M} - \frac{\partial \ln L}{\partial \ln t} \frac{\mathrm{d}t}{t} - \frac{\partial \ln L}{\partial \ln Y_0} \frac{\mathrm{d}Y_0}{Y_0}, \quad (3)$$

$$\frac{\mathrm{d}T_{\mathrm{eff}}}{T_{\mathrm{eff}}} - \frac{\partial \ln T_{\mathrm{eff}}}{\partial \ln Z/X_0} \frac{\mathrm{d}Z/X_0}{Z/X_0} = \frac{\partial \ln T_{\mathrm{eff}}}{\partial \ln M} \frac{\mathrm{d}M}{M} + \frac{\partial \ln T_{\mathrm{eff}}}{\partial \ln t} \frac{\mathrm{d}t}{t} + \frac{\partial \ln T_{\mathrm{eff}}}{\partial \ln Y_0} \frac{\mathrm{d}Y_0}{Y_0}, \quad (4)$$

$$\frac{\mathrm{d}\Delta\nu}{\Delta\nu} - \frac{\partial \ln \Delta\nu}{\partial \ln Z/X_0} \frac{\mathrm{d}Z/X_0}{Z/X_0} = \frac{\partial \ln \Delta\nu}{\partial \ln M} \frac{\mathrm{d}M}{M} + \frac{\partial \ln \Delta\nu}{\partial \ln t} \frac{\mathrm{d}t}{t} + \frac{\partial \ln \Delta\nu}{\partial \ln Y_0} \frac{\mathrm{d}Y_0}{Y_0}, \quad (5)$$

where $\frac{\mathrm{d}M}{M}$, $\frac{\mathrm{d}t}{t}$, $\frac{\mathrm{d}Y_0}{Y_0}$ are the unknowns and $\frac{\mathrm{d}\nu_{\mathrm{max}}}{\nu_{\mathrm{max}}}$, $\frac{\mathrm{d}\Delta\nu}{\Delta\nu}$, $\frac{\mathrm{d}T_{\mathrm{eff}}}{T_{\mathrm{eff}}}$, $\frac{\mathrm{d}Z/X_0}{Z/X_0}$ are the seismic and non-seismic differential constraints.

Results

Table: Relative differences between the two stars, from Eqs. (3)-(5)

solar mixture	GN93	AGS05		
Relative Differences of Observational Results				
$\mathrm{d}\Delta u/\Delta u\pm\sigma_{\Delta u}=-0.004\pm0.007$				
	$\pm \sigma_{T_{ m eff}} = 0.01$			
$\mathrm{d} u_{\mathrm{max}} / u_{\mathrm{max}}$	$_{ ext{x}}\pm\sigma_{ u_{ ext{max}}}=0.0$	06 ± 0.014		
Relative Differe	ences of Stellar	Model Results		
$\mathrm{d}M/M \pm \sigma_M$	0.06 ± 0.06	$\textbf{0.04} \pm \textbf{0.05}$		
$\mathrm{d}t/t\pm\sigma_t$	-0.33 ± 0.26	-0.24 ± 0.27		
$\mathrm{d} Y_0/Y_0 \pm \sigma_{Y_0}$	0.03 ± 0.12	0.07 ± 0.17		
$\mathrm{d}R/R \pm \sigma_R$	0.02 ± 0.02	0.01 ± 0.02		

Table: Parameters of HD 175272 obtained by adding the results of the figgerential analysis with those obtained for HD 181420 for a full computation of adiabatic frequencies.

solar mixture	GN93	AGS05		
Parameters of Models				
M_2	$1.38 {\pm} 0.20$	$1.33 \pm\ 0.36$		
$t_2(Myr)$	1521 ± 271	$1829 \!\pm 245$		
$(Y_0)_2$	$0.31 {\pm} 0.09$	$0.31 \!\pm 0.16$		
Properties of Models				
R_2/R_{\odot}	1.64	1.65		
$\Delta \nu$	75.01	72.80		
$ u_{ m max}$	1455	1393		
$\mathcal{T}_{ ext{eff}}$	6655	6645		
L_2/L_{\odot}	4.7	4.8		
$\log g_2$	4.15	4.13		

merasion

- √ The differential analysis method is based on scaling relations, and benefit from the comparison to a star with similar characterisitcs.
- √ The scientific output of many astroseismic objects with a low SNR benefit from the precise modeling of nearby reference stars with a high SNR.
- ✓ It can be applied to stars with interesting properties, such as stars hosting an exoplanet or members of a double system.

Perspectives

- Apply the same type of analysis to other types of CoRoT and Kepler's stars with a low SNR, from red giants to solar-like stars.
- Caracterize the well-constrained stars: a very precise determination of the structural differences between nearby stars.

